首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵翔  李娜  王棚涛  张骁 《生命科学》2011,(1):115-120
干旱、盐渍、低温等均可导致植物可利用水分的亏缺,表现为水分胁迫。植物感受到水分胁迫,诱导脱落酸(abscisic acid,ABA)生物合成。ABA可通过促使气孔关闭或抑制气孔开放,使作物尽可能地降低蒸腾失水,以抵御水分胁迫。该文就植物激素ABA及其下游信号过氧化氢(hydrogenperoxide,H2O2)、一氧化氮(nitric oxide,NO)以及Ca2+等在植物气孔运动调节方面的研究进展进行概述,以构建水分胁迫下ABA调节植物气孔运动的可能模式。  相似文献   

2.
植物根系感知外界水分胁迫刺激,诱导ABA生物合成。ABA既可诱导气孔关闭或抑制气孔开放,以降低植物的蒸腾失水,又可影响植物根系发育,以抵御水分胁迫。本文就植物激素ABA及其下游信号H2O2、NO以及Ca2+等在植物生长调节方面的研究进展进行概述,以构建水分胁迫下植物生长自我调控的可能模式。  相似文献   

3.
Abstract Leaf diffusion resistance and leaf water potential of intact Solanum melongena plants were measured during a period of chilling at 6 °C. Two pretreatments, consisting of a period of water stress or a foliar spraying of abscisic acid (ABA), were imposed upon the plants prior to chilling. The control plants did not receive a pretreatment. In addition to intact plant studies, stomatal responses to water loss and exogenous abscisic acid were investigated using excised leaves, and the influence of the pretreatment observed. Chilled, control plants wilted slowly and maintained open stomata despite a decline in leaf water potential to –2.2 MPa after 2 d of chilling. In contrast plants that had been water stressed or had been sprayed with abscisic acid, prior to chilling, did not wilt and maintained a higher leaf water potential and a greater leaf diffusion resistance. In plants that had not received a pretreatment, abscisic acid caused stomatal closure at 35 °C, but at 6°C it did not influence stomatal aperture. The two pretreatments greatly increased stomatal sensitivity to both exogenous ABA and water stress, at both temperatures. Stomatal response to water loss from excised leaves was greatly reduced at 6°C. These results are discussed in relation to low temperature effects on stomata and the influence of preconditioning upon plant water relations.  相似文献   

4.
Plants have evolved elaborate mechanisms to perceive and integrate signals from various environmental conditions.On leaf surface,stomata formed by pairs of guard cells mediate gas exchange,water transp...  相似文献   

5.
In grapevine, the penetration and sporulation of Plasmopara viticola occur via stomata, suggesting functional relationships between guard cells and the pathogen. This assumption was supported by our first observation that grapevine (Vitis vinifera cv. Marselan) cuttings infected by P. viticola wilted more rapidly than healthy ones when submitted to water starvation. Here, complementary approaches measuring stomatal conductance and infrared thermographic and microscopic observations were used to investigate stomatal opening/closure in response to infection. In infected leaves, stomata remained open in darkness and during water stress, leading to increased transpiration. This deregulation was restricted to the colonized area, was not systemic and occurred before the appearance of symptoms. Cytological observations indicated that stomatal lock-open was not related to mechanical forces resulting from the presence of the pathogen in the substomatal cavity. In contrast to healthy leaves, stomatal closure in excised infected leaves could not be induced by a water deficit or abscisic acid (ABA) treatment. However, ABA induced stomatal closure in epidermal peels from infected leaves, indicating that guard cells remained functional. These data indicate that the oomycete deregulates guard cell functioning, causing significant water losses. This effect could be attributed to a nonsystemic compound, produced by the oomycete or by the infected plant, which inhibits stomatal closure or induces stomatal opening; or a reduction of the back-pressure exerted by surrounding epidermal cells. Both hypotheses are under investigation.  相似文献   

6.
Three wilty mutants of tomato, flacca, sitiens, and notabilis, were compared with two control normal cultivars, Rheinlands Ruhm and Lukullus, for concentration of abscisic acid and root resistance to water flow. In addition, the three mutants treated with abscisic acid during development were compared with control mutant plants for stomatal opening and root resistance. The hormonal concentration was estimated by coleoptile assay and gas chromatography. Stomatal opening was estimated by measuring rate of transpiration and by examining leaf imprints. Root resistance was estimated by measuring the amount of exudate from roots of decapitated plants and the difference between the osmotic pressure of the exudate and the root medium. A lower level of abscisic acid was found in all three mutants as compared with the control normal plants. In addition, root resistance to water flow was higher in the three mutants than in the control normal types. All three mutants completely reverted to normal phenotypically, including stomatal and root resistances, when treated with abscisic acid. It has been suggested that the first hormonal change in the mutants is that of abscisic acid, and from it proceed the other changes.This work was supported in part by a research grant from the Ford Foundation (Ford-6, A-VII).  相似文献   

7.
The pattern of stomatal opening in epidermal strips detached from leaves of Commelina benghalensis was examined. Two different phases could be distinguished in the stomatal response to KCl, one at low concentrations of KCl (up to 60 mM) and the other at high KCl concentrations (above 100 mM). The stomatal opening at low KCl concentrations was stimulated remarkably by light or fusicoccin and was suppressed by abscisic acid. At higher KCl concentrations, the stimulation by light or FC as well as the inhibition by ABA was limited. Both phases of stomatal response to KCl were sensitive to carbonyl cyanide-m-chlorophenyl hydrazone. The results suggest that illumination or FC favours selectively stomatal opening only at low KCl concentrations. The ionic participation in the stomatal opening is similar to the heterophasic uptake of ions by plant cells/roots.Abbreviations FC fusicoccin - ABA abscisic acid - CCCP carbonyl cyanide-m-chlorophenyl hydrazone  相似文献   

8.
Water Stress Reduces Ozone Injury via a Stomatal Mechanism   总被引:13,自引:0,他引:13       下载免费PDF全文
Various studies have shown that water-stressed plants are more tolerant of ozone exposures than are unstressed plants. Two probable explanations for this tolerance are (a) stomatal closure which reduces ozone uptake and (b) biochemical or anatomical changes within the leaves. Phaseolus vulgaris cv Pinto bean plants were established and transferred to membrane systems which controlled the osmotic potential around the roots at −35 or −80 kilopascals for 5 days prior to ozone treatment (0 or 1.0 microliters per liter for 2 hours). Both water-stressed and unstressed plants were sprayed with various concentrations of abscisic acid to close the stomata or with fusicoccin to induce stomata opening. The abaxial stomatal resistances of primary and trifoliate leaves were measured just prior to ozone exposure. Plant response to ozone was determined by stress ethylene production and chlorophyll loss. Both water stress and abscisic acid induced stomatal closure and reduced ozone injury. In water-stressed plants, fusicoccin induced stomatal opening and those plants were as sensitive to ozone as were the non-water-stressed plants. These data suggest that water stress protects plants from ozone injury mainly through its influence on stomatal aperture rather than through biochemical or anatomical changes.  相似文献   

9.
The stomatal resistance of individual leaves of young cotton plants (Gossypium hirsutum L. var. Stoneville 213) was measured during a period of soil moisture stress under conditions of constant evaporative demand. When plants were subjected to increasing soil water stress, increases in stomatal resistance occurred first on the lower leaves and the stomata on the upper surfaces were the most sensitive to decreasing leaf-water potential. Stomatal closure proceeded from the oldest leaves to the youngest as the stress became more severe. This apparent effect of leaf age was not due to radiation differences during the stress period. Radiation adjustments on individual leaves during their development altered the stomatal closure potential for all leaves, but did not change the within-plant pattern. Our data indicate that no single value of leaf water potential will adequately represent a threshold for stomatal closure in cotton. Rather, the stomatal resistance of each leaf is uniquely related to its own water potential as modified by age and radiation regime during development. The effect of age on stress-induced stomatal closure was not associated with a loss of potassium from older leaves. Increases in both the free and bound forms of abscisic acid were observed in water-stressed plants, but the largest accumulations occurred in the youngest leaves. Thus, the pattern of abscisic acid accumulation in response to water stress did not parallel the pattern of stomatal closure induced by water stress.  相似文献   

10.
Plants of Commelina communis L. were grown in culture solution to which NaCl was added for 48 h. The solutions were then replaced with normal medium, so that the plants could recover from the stress. The water potential increased almost to that of the controls during 4 h of recovery, but stomatal resistance stayed high. Cytokinin treatment of leaf discs failed to enhance recovery of stomatal aperture, although it enhanced stomatal recovery of identically treated epidermal tissue. Proline levels in leaves correlated well with stomatal resistance. Incubation of epidermal tissue in D-proline inhibited stomatal opening. NaCl and benzyladenine interacted with the effect of proline, and the effect of abscisic acid and was additive to that of proline.  相似文献   

11.
The role of ion channels in light-dependent stomatal opening   总被引:7,自引:0,他引:7  
Stomatal opening represents a major determinant of plant productivity and stress management. Because plants lose water essentially through open stomata, volume control of the pore-forming guard cells represents a key step in the regulation of plant water status. These sensory cells are able to integrate various signals such as light, auxin, abscisic acid, and CO(2). Following signal perception, changes in membrane potential and activity of ion transporters finally lead to the accumulation of potassium salts and turgor pressure formation. This review analyses recent progress in molecular aspects of ion channel regulation and suggests how these developments impact on our understanding of light- and auxin-dependent stomatal action.  相似文献   

12.
Cytokinins and auxins are major phytohormones involved in various aspects of plant growth and development. These phytohormones are also known to antagonize the effects of abscisic acid (ABA) on stomatal movement, and to affect ethylene biosynthesis. As ethylene has an antagonistic effect on ABA-induced stomatal closure, the possibility that the antagonistic effects of these phytohormones on ABA were mediated through ethylene biosynthesis was investigated. Both the cytokinin, 6-benzyladenine (BA), and the auxin, 1-naphthaleneacetic acid (NAA), antagonized ABA-induced stomatal closure in a manner similar to that following application of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). However, these effects were negated when ethylene signalling, perception, or biosynthesis were blocked. As stomatal aperture is regulated by changes in guard cell volume, ABA application was found to reduce the volume of the guard cell protoplasts (GCP). It was found that BA, NAA, or ACC application compensated perfectly for the reduction in GCP volume by ABA application in WT plants. The above observations suggest that cytokinins and auxins inhibit ABA-induced stomatal closure through the modulation of ethylene biosynthesis, and that ethylene inhibits the ABA-induced reduction of osmotic pressure in the guard cells.  相似文献   

13.
With the aim to contribute to elucidation of the role of phytohormones in plant responses to stresses the endogenous contents of abscisic acid (ABA) and cytokinins (CK) were followed in French bean, maize, sugar beet, and tobacco during water stress and subsequent rehydration. The effects of pre-treatments with exogenous ABA or benzyladenine (BA) before imposition of water stress were also evaluated. The content of ABA increased by water stress, and with the exception of bean plants increased content of ABA remained also after rehydration. In all plant species the ABA content was further increased by ABA pre-treatment, but in bean and maize it decreased by BA pre-treatment. The highest total content of CK was observed in bean and the lowest in maize during water stress. In their spectrum, the storage CK were dominant in bean, and inactive CK in tobacco while in sugar beet and maize all groups were present in comparable amounts. In all plant species, the contents of CK increased during water stress and with exception of bean they decreased back after rehydration. ABA pre-treatment further increased contents of CK in water-stressed bean and tobacco. BA pre-treatment increased contents of CK in sugar beet and tobacco after rehydration.  相似文献   

14.
The interplay between jasmonic acid (JA) and abscisic acid (ABA) in plant responses to water stress and in water-stress-enhanced oxidative stress was investigated in Arabidopsis thaliana plants subjected to water stress by water deprivation. For this purpose a drought assay was conducted using Arabidopsis mutants impaired in ABA (aba2), JA (aos), and ascorbate (vtc1) biosynthesis. Our results show an interaction between ABA and JA during their biosynthesis. Moreover, the coordinated action of ABA and JA protected wild-type, aba2, and aos plants from the effects of stress. However, this effect was not observed in the vtc1 mutant, which showed a distinct decrease in the F v/F m ratio, concomitant with a marked fall in relative water content (RWC), despite high endogenous concentrations of JA and ABA. This finding indicates the relevance of ascorbate metabolism in plant acclimation to stress. Despite the interaction between the two phytohormones, drought-associated stomatal closure is regulated mainly by ABA and weakly by JA, whereas JA plays a role in the formation of antioxidants regulating ascorbate and glutathione metabolism. A time course analysis revealed the relevance of plant age and stress duration in the responses of the mutants compared to wild-type plants. Here we discuss the relationship between ABA, JA, ascorbate, and glutathione in plants under water stress.  相似文献   

15.
Summary Isolated epidermal strips of Commelina communis L. showed progressively smaller stomatal openings when incubated in abscisic acid solutions ranging in concentration from 10-8 to 10-4 M. The effects were reproducible and did not appear to be affected by the presence of auxin, gibberellic acid or kinetin. This specificity suggests that this method may prove valuable as a quick, sensitive bioassay for abscisic acid and other related compounds which might be used as antitranspirants on field crops. The fungal toxin fusicoccin, previously reported to cause increased stomatal opening on intact leaves, partially reversed the closure induced by abscisic acid.  相似文献   

16.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

17.
18.
Phytohormones participate in many aspects of the plant life cycle, including responses to biotic and abiotic stresses. They play a key role in plant responses to the environment with direct bearing on a plant’s fitness for adaptation and reproduction. In recent years, there have been major advances in our understanding of the role of phytohormones in halophytic plants. The variability in maximal salinity level that halophytes can tolerate makes it difficult to characterize the specific traits responsible for salt tolerance. However, the most evident effect of salinity is growth disturbance, and growth is directly governed by phytohormones. Phytohormones such as abscisic acid, salicylic acid ethylene and jasmonates are traditionally related to stress responses, while the involvement of cytokinins, gibberellins and auxins has started to be analyzed. Polyamines, although they can’t be considered phytohormones because of the high concentrations required for cell responses, have been proposed as a new category of plant growth regulators involved in several plant processes and stress responses. This review integrates the advances in the knowledge about phytohormones in halophytes and their participation in salt tolerance.  相似文献   

19.
Guard cells allow land plants to survive under restricted or fluctuating water availability. They control the exchange of gases between the external environment and the interior of the plant by regulating the aperture of stomatal pores in response to environmental stimuli such as light intensity, and are important regulators of plant productivity. Their turgor driven movements are under the control of a signalling network that is not yet fully characterised. A reporter gene fusion confirmed that the Arabidopsis APK1b protein kinase gene is predominantly expressed in guard cells. Infrared gas analysis and stomatal aperture measurements indicated that plants lacking APK1b are impaired in their ability to open their stomata on exposure to light, but retain the ability to adjust their stomatal apertures in response to darkness, abscisic acid or lack of carbon dioxide. Stomatal opening was not specifically impaired in response to either red or blue light as both of these stimuli caused some increase in stomatal conductance. Consistent with the reduction in maximum stomatal conductance, the relative water content of plants lacking APK1b was significantly increased under both well-watered and drought conditions. We conclude that APK1b is required for full stomatal opening in the light but is not required for stomatal closure.  相似文献   

20.
Eight to nine months old seedlings of the Cactaceae Gereus validus HAWORTH grown in soil culture were chosen to study day-night cycles of net CO2 exchange, indicating the stomatal rhythm of crassulacean acid metabolism, CAM, in relation to day-night changes of abscisic-acid levels. Drought stress was imposed by repotting the seedlings in dry sand and keeping them without watering for up to 37–39 days while control plants were watered regularly. Abscisicacid levels were higher in the stressed plants than in the controls and higher in the light period aa compared to the dark period. In the stressed plants abscisic-acid levels increased throughout the light period. Abscisic acid reached particularly high levels in the late afternoon in plants stressed for 37 days. It is conceivable that stomatal closure during the first part of the light period of CAM is elicited by high internal partial pressures of CO2 built up by decarboxylation of nocturnally stored malic acid. However, the elimination of late-afternoon stomatal opening and the reduction of stomatal opening during the dark period of CAM observed under conditions of drought stress must have other reasons. The analyses of abscisic acid presented allow the conclusion that this stress hormone is involved in stomatal regulation of CAM under such conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号