首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vaccinia CC-36 murine colon oncolysate (VCO) prepared with interleukin-2-gene encoded recombinant vaccinia virus (IL-2VCO) was used in the treatment of a syngeneic murine colon adenocarcinoma (CC-36) hepatic metastasis to test the beneficial effect of the interleukin-2-gene encoded vaccinia virus over a control recombinant vaccinia virus in producing a vaccinia oncolysate tumor cell vaccine. Results suggest that the IL-2VCO treatment significantly reduced the hepatic tumor burden in comparison with the controls that received either IL-2-gene-encoded recombinant vaccinia virus or a plain recombinant vaccinia virus or vaccinia oncolysate prepared with the plain recombinant virus. The survival of mice treated with IL-2VCO was also improved in comparison with mice treated with other preparations. The induction of a cytolytic T lymphocyte response was examined to elucidate the mechanism of the induction of antitumor responses in IL-2VCO-treated mice. Fresh peripheral blood lymphocytes (PBL) isolated from IL-2VCO-treated mice showed a higher cytolytic activity against CC-36 tumor cell target when compared to PBL from the mice of other treatment groups, suggesting that the IL-2VCO induced an antitumor cytolytic T lymphocyte response. These results suggest that a vaccinia oncolysate, prepared with recombinant vaccinia virus encoding an immunomodulating cytokine gene will enhance antitumor responses in the host.  相似文献   

2.
Monoclonal antibody therapy for cancer has significantly altered the natural history of several common cancers. This success was attained only after many years of failure to understand the technical limitations of antibody therapy. In order to further exploit the immune system, tumor vaccine strategies are an active research focus. Virus based immune agents including GM-CSF armed vectors are among these early efforts. Herpes, adenovirus, and vaccinia based vectors encoding GM-CSF have reported intriguing early clinical trial results that are reviewed here.  相似文献   

3.
Recombinant vaccinia virus has been widely employed as a cancer vaccine in several clinical trials. In this study we explored, employing BALB/c mice transgenic for the rat neu oncogene, the ability of the recombinant vaccinia virus neu (rV-neuT) vaccine to inhibit growth of neu+ mammary carcinomas and whether the efficacy of vaccination was dependent on: (a) carcinogenesis stage at which the vaccination was initiated; (b) number of vaccinations and (c) route of delivery (systemic vs. local). BALB-neuT mice were vaccinated one, two and three times by subcutaneous (s.c.) and intramammary gland (im.g.) injection with rV-neuT or V-wt (wild-type vaccinia virus) starting at the stage in which mouse mammary gland displays atypical hyperplasia, carcinoma in situ or invasive carcinoma. We demonstrated that vaccination using rV-neuT was more effective when started at an earlier stage of mammary carcinogenesis and after three vaccinations. The im.g. vaccination was more effective than the s.c. vaccination in inhibiting mammary carcinogenesis, eliciting anti-Neu antibodies, increasing anti-Neu IgG2a/G3 isotypes and inducing antibodies able to trigger mammary tumor cells apoptosis and antibody-dependent cellular cytotoxicity. The better protective ability of rV-neuT im.g. vaccination was associated with its capacity to induce a superior degree of in vivo mammary cancer cells apoptosis. Our research suggests that intratumoral vaccination using recombinant vaccinia virus could be employed to increase the activity of a genetic cancer vaccine. This study may have important implications for the design of cancer vaccine protocols for the treatment of breast cancer and of accessible tumors using recombinant vaccinia virus.  相似文献   

4.
Recently we demonstrated the control of a mucosal challenge with a pathogenic chimera of simian and human immunodeficiency virus (SHIV-89.6P) by priming with a Gag-Pol-Env-expressing DNA and boosting with a Gag-Pol-Env-expressing recombinant modified vaccinia virus Ankara (DNA/MVA) vaccine. Here we evaluate the ability of the MVA component of this vaccine to serve as both a prime and a boost for an AIDS vaccine. The same immunization schedule, MVA dose, and challenge conditions were used as in the prior DNA/MVA vaccine trial. Compared to the DNA/MVA vaccine, the MVA-only vaccine raised less than 1/10 the number of vaccine-specific T cells but 10-fold-higher titers of binding antibody for Env. Postchallenge, the animals vaccinated with MVA alone increased their CD8 cell numbers to levels that were similar to those seen in DNA/MVA-vaccinated animals. However, they underwent a slower emergence and contraction of antiviral CD8 T cells and were slower to generate neutralizing antibodies than the DNA/MVA-vaccinated animals. Despite this, by 5 weeks postchallenge, the MVA-only-vaccinated animals had achieved as good control of the viral infection as the DNA/MVA group, a situation that has held up to the present time in the trial (48 weeks postchallenge). Thus, MVA vaccines, as well as DNA/MVA vaccines, merit further evaluation for their ability to control the current AIDS pandemic.  相似文献   

5.
Plasmid DNA, an effective vaccine vector, can induce both cellular and humoral immune responses. However, plasmid DNA raises issues concerning potential genomic integration after injection. This issue should be considered in preclinical studies. Tiantan vaccinia virus (TV) has been most widely utilized in eradicating smallpox in China. This virus has also been considered as a successful vaccine vector against a few infectious diseases. Potent T cell responses through T-cell receptor (TCR) could be induced by three injections of the DNA prime vaccine followed by a single injection of recombinant vaccinia vaccine. To develop a safer immunization strategy, a single DNA prime followed by a single recombinant Tiantan vaccinia (rTV) AIDS vaccine was used to immunize mice. Our data demonstrated that one DNA prime/rTV boost regimen induced mature TCR activation with high functional avidity, preferential T cell Vβ receptor usage and high sensitivity to anti-CD3 antibody stimulation. No differences in T cell responses were observed among one, two or three DNA prime/rTV boost regimens. This study shows that one DNA prime/rTV boost regimen is sufficient to induce potent T cell responses against HIV.  相似文献   

6.
BACKGROUND: The development of effective adjuvant therapies for the treatment of high-risk melanoma patients is critical for the prevention of metastatic disease and improvement of patient survival. Active specific immunotherapy has been tested as an adjuvant treatment in numerous clinical trials with overall limited, but occasionally promising, success rates. Newcastle disease virus (NDV) oncolysate has been utilized as an adjunctive immunotherapeutic agent in the postsurgical management of these patients. A phase II study initiated in 1975 using adjuvant vaccine therapy composed of allogeneic and autologous human melanoma cells infected with live NDV (NDV oncolysate) in patients with AJCC stage III melanoma following therapeutic lymph node dissection has shown >60% survival rate at 10 years with no adverse effects. Continued long-term analysis of trials with promising early results as well as assessment of immunologic responses generated in these patients may result in improved therapeutic decisions for clinical trials in the future. MATERIALS AND METHODS: We analyzed the 15-year survival of patients treated postsurgically with NDV oncolysate in the phase II study described above. In an attempt to understand the immunological effects of this treatment, we have also carried out a comprehensive analysis of the peripheral blood T cell repertoire in these patients. RESULTS: The overall 15-year survival of this group of patients is 55%. Previous studies have suggested that improved outcome in patients undergoing immunotherapy is correlated with increased numbers of CD8(+)CD57(+) cells. In surviving patients, we observed a striking oligoclonality in the CD8(+) T cell population in peripheral blood, which reflects clonal expansions in the CD8(+)CD57(+) subset. CONCLUSIONS: The data suggest that adjuvant vaccination with NDV oncolysates is associated with prolonged survival of patients with lymph node-positive malignant melanoma and that CD8(+) T cells may be an important component of therapeutic efficacy.  相似文献   

7.
田厚文  任皎  黄薇  范江涛  赵莉  阮力 《病毒学报》2006,22(5):358-363
采用基因工程方法将HPV16E6、E7基因融合后插入痘苗病毒载体,通过同源重组构建表达人乳头瘤病毒16型E6/E7融合蛋白的非复制型重组痘苗病毒疫苗,用C57BL/6小鼠观察其免疫原性和抗肿瘤移植情况。测序结果表明融合的HPV16E6、E7基因序列与设计相符;构建的非复制型重组痘苗病毒经Dot blot鉴定,显示有E6、E7融合基因的插入;Western blot检测表明该重组病毒在鸡胚成纤维细胞中能表达HPV16型E6/E7融合蛋白。动物免疫试验表明,该重组病毒在小鼠体内可诱发E6、E7特异性抗体;被免疫小鼠能抵抗TC-1肿瘤细胞的攻击。此结果为将来进一步研制HPV16、18型联合疫苗打下了基础。  相似文献   

8.
A Newcastle disease virus (NDV) oncolysate has been established as a unique and effective immune-stimulatory root for tumor treatment. Thus, the aim of the current study was to investigate the effects of intratumoral administration of NDV oncolysate on immune response and tumor regression of C57BL/6 mouse model of human papillomavirus (HPV) related transplanted with TC-1 syngeneic cancer cells. To further investigate the mechanism underlying the antitumor response, cytolytic and lymphocyte proliferation responses in splenocytes were measured using lactate dehydrogenase (LDH) release and MTT assays, respectively. In this regard, levels of IL-10, IFN-γ, and IL-4 were measured using ELISA after re-stimulation. The immune responses efficacy was evaluated by in vivo tumor regression assay. The results showed that immunization with the different titers of NDV lysate significantly reduced tumor volume in comparison with a combination of virus lysate and tumor cell lysate. Also, virus lysate could significantly enhance cytotoxic T lymphocyte production and lymphocyte proliferation rates versus tumor cell lysate. Also, our major findings are that the peritumorally injection of NDV oncolysate effectively induces antitumor immune responses through increased levels of IL-4, IFN-γ, and reduction of IL-10. These results indicate that this treatment is a specific, active immune mechanism stimulator, and may prove to be a useful therapeutic for a treatment against cervical cancers and merits further investigation.  相似文献   

9.
Vaccinia viruses defective in the essential gene coding for the enzyme uracil DNA glycosylase (UDG) do not undergo DNA replication and do not express late genes in wild-type cells. A UDG-deficient vaccinia virus vector carrying the tick-borne encephalitis (TBE) virus prM/E gene, termed vD4-prME, was constructed, and its potential as a vaccine vector was evaluated. High-level expression of the prM/E antigens could be demonstrated in infected complementing cells, and moderate levels were found under noncomplementing conditions. The vD4-prME vector was used to vaccinate mice; animals receiving single vaccination doses as low as 10(4) PFU were fully protected against challenge with high doses of virulent TBE virus. Single vaccination doses of 10(3) PFU were sufficient to induce significant neutralizing antibody titers. With the corresponding replicating virus, doses at least 10-fold higher were needed to achieve protection. The data indicate that late gene expression of the vaccine vector is not required for successful vaccination; early vaccinia virus gene expression induces a potent protective immune response. The new vaccinia virus-based defective vectors are therefore promising live vaccines for prophylaxis and cancer immunotherapy.  相似文献   

10.
为构建适用于疫苗株筛选的痘苗病毒载体,利用标记瞬时稳定的原理,在痘苗病毒单选择标记载体psc65的基础上,构建成带有neo和LacZ双选择标记的痘苗病毒载体pVI75.为检验载体pVI75的有效性,将HIV-1合成基因syngpnef插入到载体pVI75上,构建成转移质粒pVI75-syngpnef,并与天坛株752-1痘苗病毒共转染CEF细胞.筛选得到的重组病毒经PCR和Dot blot检验表明,标记基因已被删除,而目的基因被整合到痘苗病毒基因组上.Westem blot检测结果表明,目的基因的表达正确.痘苗病毒载体pVI75的构建使得疫苗株筛选的工作量大为降低,时间大大缩短,为利用痘苗病毒载体构建重组病毒疫苗株的研究提供了参考.  相似文献   

11.
12.
p53 is overexpressed by half of all cancers, and is an attractive target for a vaccine approach to immunotherapy. p53 overexpression is frequently the result of point mutations, which leaves the majority of the protein in its wild-type form. Therefore, the majority of p53 sequence is wild type, making it a self-protein for which tolerance plays a role in limiting immune responses. To overcome tolerance to p53, we have expressed wild-type murine p53 in the nonpathogenic attenuated poxvirus, modified vaccinia virus Ankara (recombinant modified vaccinia virus Ankara expressing wild-type murine p53 (rMVAp53)). Mice immunized with rMVAp53 vaccine developed vigorous p53-specific CTL responses. rMVAp53 vaccine was evaluated for its ability to inhibit the outgrowth of the syngeneic murine sarcoma Meth A, which overexpresses mutant p53. Mice were inoculated with a lethal dose (5 x 10(5) cells injected s.c.) of Meth A tumor cells and vaccinated by i.p. injection 3 days later with 5 x 10(7) PFU of rMVAp53. The majority of mice remained tumor free and resistant to rechallenge with Meth A tumor cells. We wished to determine whether rMVAp53 immunization could effect the rejection of an established, palpable Meth A tumor. In subsequent experiments, mice were injected with 10(6) Meth A tumor cells, and treated 6 days later with anti-CTLA-4 Ab (9H10) and rMVAp53. The majority of treated mice had complete tumor regression along with lasting tumor immunity. In vivo Ab depletion confirmed that the antitumor effect was primarily CD8 and to a lesser extent CD4 dependent. These experiments demonstrate the potential of a novel cell-free vaccine targeting p53 in malignancy.  相似文献   

13.
The influence of preexisting immunity to viral vectors is a major issue for the development of viral-vectored vaccines. In this study, we investigate the effect of preexisting vaccinia virus immunity on the immunogenicity and efficacy of a DNA/modified vaccinia Ankara (MVA) SIV vaccine in rhesus macaques using a pathogenic intrarectal SIV251 challenge. Preexisting immunity decreased SIV-specific CD8 and CD4 T cell responses but preserved the SIV-specific humoral immunity. In addition, preexisting immunity did not diminish the control of an SIV challenge mediated by the DNA/MVA vaccine. The peak and set point viremia was 150- and 17-fold lower, respectively, in preimmune animals compared with those of control animals. The peak and set point viremia correlated directly with colorectal virus at 2 wk postchallenge suggesting that early control of virus replication at the site of viral challenge was critical for viral control. Factors that correlated with early colorectal viral control included 1) the presence of anti-SIV IgA in rectal secretions, 2) high-avidity binding Ab for the native form of Env, and 3) low magnitude of vaccine-elicited SIV-specific CD4 T cells displaying the CCR5 viral coreceptor. The frequency of SIV-specific CD8 T cells in blood and colorectal tissue at 2 wk postchallenge did not correlate with early colorectal viral control. These results suggest that preexisting vaccinia virus immunity may not limit the potential of recombinant MVA vaccines to elicit humoral immunity and highlight the importance of immunodeficiency virus vaccines achieving early control at the mucosal sites of challenge.  相似文献   

14.

Background

Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable.

Methodology/Principal Findings

A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 105 TCID50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles.

Conclusions/Significance

The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice.  相似文献   

15.
The primary end point of this study was to determine the safety and feasibility of intraprostatic administration of PSA-TRICOM vaccine [encoding transgenes for prostate-specific antigen (PSA) and 3 costimulatory molecules] in patients with locally recurrent or progressive prostate cancer. This trial was a standard 3 + 3 dose escalation with 6 patients each in cohorts 4 and 5 to gather more immunologic data. Nineteen of 21 patients enrolled had locally recurrent prostate cancer after definitive radiation therapy, and 2 had no local therapy. All cohorts received initial subcutaneous vaccination with recombinant vaccinia (rV)-PSA-TRICOM and intraprostatic booster vaccinations with recombinant fowlpox (rF)-PSA-TRICOM. Cohorts 3–5 also received intraprostatic rF-GM-CSF. Cohort 5 received additional subcutaneous boosters with rF-PSA-TRICOM and rF-GM-CSF. Patients had pre- and post-treatment prostate biopsies, and analyses of peripheral and intraprostatic immune cells were performed. There were no dose-limiting toxicities, and the maximum tolerated dose was not reached. The most common grade 2 adverse events were fever (38 %) and subcutaneous injection site reactions (33 %); the single grade 3 toxicity was transient fever. Overall, 19 of 21 patients on trial had stable (10) or improved (9) PSA values. There was a marked increase in CD4+ (p = 0.0002) and CD8+ (p = 0.0002) tumor infiltrates in post- versus pre-treatment tumor biopsies. Four of 9 patients evaluated had peripheral immune responses to PSA or NGEP. Intraprostatic administration of PSA-TRICOM is safe and feasible and can generate a significant immunologic response. Improved serum PSA kinetics and intense post-vaccination inflammatory infiltrates were seen in the majority of patients. Clinical trials examining clinical end points are warranted.  相似文献   

16.
BACKGROUND: The purpose of this vaccine study was to determine the safety and feasibility of vaccination with an allogeneic prostate carcinoma cell line, LNCaP, expressing recombinant interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) and to evaluate the efficacy of inducing tumor-specific immune responses in HLA-A2-matched patients with hormone refractory prostate cancer (HRPC). METHODS: In a dose-escalating phase I study, HLA-A2-matched HRPC patients received four vaccinations of irradiated allogeneic LNCaP cells retrovirally transduced to secrete IL-2 and IFN-gamma at study day 1, 15, 29 and 92 and subsequently every 91 days unless tumor progression was evident. RESULTS: Three patients receiving the first dose level (7.5 million cells) showed no evidence of dose-limiting toxicity or vaccine-related adverse events including autoimmunity. One of three patients receiving the second dose level (15 million cells) developed a transient self-limiting grade 3 local injection site reaction (ulceration) after the eighth vaccination. Vaccine-induced immune responses against a broad array of prostate tumor associated antigens were detected in all six patients. Two of the three patients receiving the higher dose showed a decline in serum prostate-specific antigen (PSA) values of more than 50%, with one patient remaining on protocol for 3 years. CONCLUSIONS: Immunisation with the allogeneic LNCaP/IL-2/IFN-gamma vaccine is safe and feasible without any dose-limiting toxicity or autoimmunity. A 50% PSA decline was achieved in two of the six patients. This encouraging data provides the scientific rationale for further investigation of the vaccine in a phase II trial.  相似文献   

17.
Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.  相似文献   

18.
19.
Campaigns of fox vaccination against rabies were carried out in Belgium, grand-duchy of Luxembourg and France in September 1986, June and September 1987. The SAD B19 attenuated strain of rabies virus, contained in baits (Tübingen baits) was used as vaccine. Baits were distributed at a range density of 11 to 15 baits per km2. First results are very encouraging. A recombinant vaccinia virus harbouring the rabies virus glycoprotein gene has been developed. This recombinant virus can be given to the fox by the oral route and protects it against rabies virus challenge; it is also innocuous for the fox and other non-target European species. A first trial of fox vaccination against rabies using this recombinant vaccinia-rabies virus has been carried out in Belgium, on a military domain, in October 1987.  相似文献   

20.
Huang  Baoying  Wang  Wenling  Li  Renqing  Wang  Xiuping  Jiang  Tao  Qi  Xiangrong  Gao  Yingying  Tan  Wenjie  Ruan  Li 《Virology journal》2012,9(1):1-13
Immunity to conserved viral antigens is an attractive approach to develop a universal vaccine against epidemic and pandemic influenza. A nucleoprotein (NP)-based vaccine has been explored and preliminary studies have shown promise. However, no study has explored the immunity and cross-protective efficacy of recombinant NP derived from Escherichia coli compared with recombinant vaccinia virus (Tiantan). Recombinant NP protein (rNP) from influenza virus A/Jingke/30/95(H3N2) was obtained from E. coli and recombinant vaccinia virus (Tiantan) RVJ1175NP. Purified rNP without adjuvant and RVJ1175NP were used to immunize BALB/c mice intramuscularly. Humoral immune responses were detected by ELISA, while cell-mediated immune responses were measured by ex vivo IFN-γ ELISPOT and in vivo cytotoxicity assays. The cross-protective efficacy was assessed by a challenge with a heterosubtype of influenza virus A/PR/8/34(H1N1). Our results demonstrate that a high dose (90 μg) of rNP induced NP-specific antibodies and T cell responses that were comparable with those of RVJ1175NP in mice. Importantly, the survival ratio (36, 73, and 78%) of the vaccinated mice after the influenza virus A/PR/8/34(H1N1) challenge was rNP vaccine dose-dependent (10, 30, and 90 μg, respectively), and no significant differences were observed between the rNP- and RVJ1175NP-immunized (91%) mice. Influenza A virus NP derived from E. coli or recombinant vaccinia (Tiantan) virus elicited cross-protection against influenza virus in mice, and the immune response and protective efficacy of rNP were comparable to RVJ1175NP. These data provide a basis for the use of prokaryotically expressed NP as a candidate universal influenza vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号