首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is suggested that the transfer of electrons within the biological electron transfer chain is subject to the laws of electrochemical kinetics, when membrane-bound electron carriers are involved. Consequently, small tightly bound molecular complexes of two or more electron transfer proteins of different redox potential within an energy transducing membrane, which accept electrons from a donor at one membrane surface and donate it to an acceptor at the other, may be regarded as real and functioning molecular redox elements, which convert the free energy of electrons into electrochemical energy. Especially, the transfer of an electron from excited chlorophyll to an electron acceptor can be looked upon as an electrochemical oxidation of excited chlorophyll at such a complex. In this reaction the electron acceptor complex behaves like a polarized electrode, in which the electrochemical potential gradient is provided by a gradient of redox potential of its constituents.Calculations and qualitative considerations show that this concept leads to a consistent understanding of both primary and secondary reactions in photosynthesis (electron capture, delayed light emission, ion transfer, energy conversion) and can also be applied to oxidative phosphorylation. Within the proposed concept, ion transfer and the development of ion gradients have to be considered as results of electrochemical activity—not as intermediates for energy conversion. For energetic reasons, a non steady state, periodic energy coupling mechanism is postulated which functions by periodic changes of the capacity of the (electrochemically) charged energy transducing membrane, during which capacitive surplus energy is released as chemical energy. Energy transducing membranes may thus be considered as electrochemical parametric energy transformers. This concept explains active periodic conformation changes and mechanochemical processes of energy transducing membranes as energetically essential events, which trigger energy conversion according to the principle of variable parameter energy transformers.The electrochemical approach presented here has been suggested and is supported by the observation, that with respect to electron capture and conversion of excitation energy into electrochemical energy, the behaviour of excited chlorophyll at suitable solid state (semiconductor) electrodes is very similar to that of chlorophyll in photosynthetic reaction centers.  相似文献   

2.
The transport of electrons across biological membranes is believed to play an important role in many biophenomena. Although there have been many examples of systems which may be transporting electrons across Mueller-Rudin bilayer lipid membranes (blm), none has been well characterized. The system we describe here comprises a glycerol monooleate blm containing a magnesium etiochlorin (Mg-C) separating two aqueous phases each containing ferricyanide, ferrocyanide, KCl, and a platinum electrode. The E0s for the Mg-C+/Mg-C and ferri-/ferrocyanide couples are 0.22 and 0.24 V vs. SCE. Thus the MG-C+/Mb-C system is easily poised by the ferri-/ferrocyanide system. When the potentials of the ferri-/ferrocyanide couples are different on each side of the blm we show that the open-circuit membrane potential nearly equals the difference between the redox potentials. This is unequivocal evidence that electrons are being transferred across the blm from one aqueous phase to the other. On the basis of these experiments we deduce that electron transport is the major charge transport mechanism. When redox potentials are the same on each side of the blm, the conductance of the membrane can be greater than 10(-3) S/cm2. The conductance is proportional to the second power of the concentration of Mg-C in the membrane-forming mixture. A number of additional experiments are described which attempt to elucidate the mechanism of electron transfer. We believe that our data are consistent with the idea of an electron-hopping mechanism in which the transmembrane electron transport occurs by a series of second-order electron transfers between membrane-bound electron donors (Mg-C) and acceptors (Mg-C+). Alternative explanations are presented.  相似文献   

3.
Bileaflet lipid membranes were formed from solutions containing lecithin, chlorophyll and carotene in various concentrations. If all the above components were present at sufficient concentrations the membranes were photosensitive; i.e., a photocurrent was produced if a redox potential gradient was present across the membranes. The presence of chlorophyll and carotene were essential for the photosensitivity of the membranes. Photoresponse could be elicited by illuminating the membrane with light which did not excite carotene. On the other hand, elimination of the part of the light spectrum which excites chlorophyll led to the abolition of the photoresponse. The findings of this study are consistent with the assumption that the excited chlorophyll chromophores allow electron exchange at the membrane-water interface while the presence of carotene allows electron movement across the "bulk" lipid membrane.  相似文献   

4.
From a quantum mechanical standpoint, electron tunneling may occur in a nerve axon because the nerve membrane (60 to 100 angstroms) is thin enough for the tunnel effect and because the external solution and the axoplasma are redox systems which can provide electrons. Calculations and diagrams of the density-of-states are given to predict theN-shaped current-voltage characteristics which have been observed in the studies of squid giant axons, of the reconstituted liquid membranes and of the marine algae.  相似文献   

5.
A quantitative study of the kinetics of electron transfer under coupled conditions in photosynthetic bacteria has so far been prevented by overlap of the electrochromic signals of carotenoids and bacteriochlorophyll with the absorbance changes of cytochromes and reaction centers. In this paper a method is presented by which the electrochromic contribution at any wavelength can be calculated from the electrochromic signal recorded at 505 nm, using a set of empirically determined polynomial functions. The electrochromic contribution to kinetic changes at any wavelength can then be subtracted to leave the true kinetics of the redox changes. The corrected redox changes of the reaction center measured at 542 and 605 nm mutually agree, thus providing an excellent test of self-consistency of the method. The corrected traces for reaction center and of cytochrome b-566 demonstrate large effects of the membrane potential on the rate and poise of electron transfer. It will be possible to study the interrelation between proton gradient and individual electron reactions under flash or steady-state illumination.  相似文献   

6.
The bacterium Gs (Geobacter sulfurreducens) is capable of oxidizing a large variety of compounds relaying electrons out of the cytoplasm and across the membranes in a process designated as extracellular electron transfer. The trihaem cytochrome PpcA is highly abundant in Gs and is most probably the reservoir of electrons destined for the outer surface. In addition to its role in electron transfer pathways, we have previously shown that this protein could perform e/H+ energy transduction. This mechanism is achieved by selecting the specific redox states that the protein can access during the redox cycle and might be related to the formation of proton electrochemical potential gradient across the periplasmic membrane. The regulatory role of haem III in the functional mechanism of PpcA was probed by replacing Met58, a residue that controls the solvent accessibility of haem III, with serine, aspartic acid, asparagine or lysine. The data obtained from the mutants showed that the preferred e/H+ transfer pathway observed for PpcA is strongly dependent on the reduction potential of haem III. It is striking to note that one residue can fine tune the redox states that can be accessed by the trihaem cytochrome enough to alter the functional pathways.  相似文献   

7.
Optimal conditions for cyclic photophosphorylation and electric potential generation have been established in well coupled Photosystem (PS)I-enriched subchloroplast vesicles supplemented with ferredoxin. Using NADPH and oxygen as redox-poising agents, it is shown that accurate redox poising of the cyclic system is required for optimal electron transfer. The molar ratio of NADPH to oxygen, rather than their concentrations, regulates the rate of cyclic photophosphorylation. In the present experimental system, the actual redox potential of ferredoxin is of crucial importance for optimal cyclic electron transfer and energy transduction. Under conditions for optimal redox poising of the cyclic system, a relatively strong expression of the flash-induced slow electric potential component was found, as monitored by the absorption changes of carotenoids and of oxonol VI. The function and regulation of cyclic electron transfer in stroma lamellae membranes in vivo are discussed in view of the lateral heterogeneity of redox components in chloroplast membranes.  相似文献   

8.
G. Hauska  A. Trebst  W. Draber 《BBA》1973,305(3):632-641
The topography of the chloroplast membrane has been studied using the following pairs of quinoid compounds with similar structure and chemical properties, but with different lipid solubility: phenazine/sulfophenazine, naphthoquinone/naphthoquinone sulfonate, indophenol/sulfoindophenol and lumiflavin/FMN.

All these compounds in the oxidized form are able to accept electrons from the photosynthetic electron transport chain in Hill reactions. However, only the lipophilic compounds in the reduced form can donate electrons to Photosystem I, when electron flow from Photosystem II is blocked by inhibitors. This is in agreement with the notation that the oxidizing site of Photosystem I (P700+) and the electron donors for Photosystem I (cytochrome f and plastocyanin) are located inside the lipid barrier of the inner chloroplast membrane. The reducing sites in the Hill reactions must be located on the outer surface, accessible from the suspending medium.

It has been known for a long time that N,N′-tetramethyl-p-phenylenediamine can donate electrons to Photosystem I, but contrary to diaminodurene (2,3,5,6-tetramethyl phenylenediamine) it does not induce ATP formation. Both compounds are lipophilic and have similar redox potentials, but only the latter carries hydrogens which are involved in the redox reaction. For energy conservation, coupled to electon flow in Photosystem I, it therefore seems necessary that the lipophilic redox compound in the reduced form can carry hydrogens through the chloroplast membrane.  相似文献   


9.
The cytochrome bc1 complexes are proton-translocating, dimeric membrane ubiquinol:cytochrome c oxidoreductases that serve as "hubs" in the vast majority of electron transfer chains. After each ubiquinol molecule is oxidized in the catalytic center P at the positively charged membrane side, the two liberated electrons head out, according to the Mitchell's Q-cycle mechanism, to different acceptors. One is taken by the [2Fe-2S] iron-sulfur Rieske protein to be passed further to cytochrome c1. The other electron goes across the membrane, via the low- and high-potential hemes of cytochrome b, to another ubiquinone-binding site N at the opposite membrane side. It has been assumed that two ubiquinol molecules have to be oxidized by center P to yield first a semiquinone in center N and then to reduce this semiquinone to ubiquinol. This review is focused on the operation of cytochrome bc1 complexes in phototrophic purple bacteria. Their membranes provide a unique system where the generation of membrane voltage by light-driven, energy-converting enzymes can be traced via spectral shifts of native carotenoids and correlated with the electron and proton transfer reactions. An "activated Q-cycle" is proposed as a novel mechanism that is consistent with the available experimental data on the electron/proton coupling. Under physiological conditions, the dimeric cytochrome bc1 complex is suggested to be continually primed by prompt oxidation of membrane ubiquinol via center N yielding a bound semiquinone in this center and a reduced, high-potential heme b in the other monomer of the enzyme. Then the oxidation of each ubiquinol molecule in center P is followed by ubiquinol formation in center N, proton translocation and generation of membrane voltage.  相似文献   

10.
The possible role of redox-associated protons in growth of plant cells   总被引:8,自引:0,他引:8  
The protons excreted by plant cells may arise by two different mechanisms: (1) by the action of the plasma membrane H+-ATPase and (2) by plasma membrane redox reactions. The exact proportion from each source is not known, but the plasma membrane H+-ATPase is, by far, the major contributor to proton efflux. There is still some question of whether the redox-associated protons produced by NADH oxidation on the inner side of the plasma membrane traverse the membrane in a 1 : 1 relationship with electrons generated in the redox reactions. Membrane depolarization observed in the presence of ferricyanide reduction by plasma membranes of whole cells or tissues or the lag period between ferricyanide reduction and medium acidification argue that only scalar protons may be involved. The other major argument against tight coupling between protons and electrons involves the concept of strong charge compensation. When ferricyanide is reduced to ferrocyanide on the outside of cells or tissues, an extra negative charge arises, which is compensated for by the release of H+ or K+, so that the total ratio of increased H+ plus K+ equals the electrons transferred by transmembrane electron transport. These are strong arguments against a tight coupling between electrons and protons excreted by the plasma membrane. On the other hand, there is no question that inhibitor studies provide evidence for two mechanisms of proton generation by plasma membranes. When the H+-ATPase activity is totally inhibited, the addition of ferricyanide induces a burst of extra proton excretion, orvice versa, when plasma membrane redox reactions are inhibited, the H+-ATPase can function normally. Since plasma membrane redox reactions and associated H+ excretion are related to growth, it is possible that in plants the ATPase-generated protons have a different function from redox-associated protons. The H+-ATPase-generated protons have been considered for many years to be necessary for cell wall expansion, allowing elongation to take place. A special function of the redox-generated protons may be in initiating proliferative cell growth, based on the presence of a hormone-stimulated NADH oxidase in membranes of soybean hypocotyls and stimulation of root growth by low concentrations of oxidants. Here we propose that this NADH oxidase and the redox protons released by its action control growth. The mechanism for this may be the evolution of protons into a special membrane domain, from which a signal to initiate cell proliferation may originate, independent of the action of the H+-ATPase-generated protons. It is also possible that both expansion and proliferative growth are controlled by redox-generated protons.  相似文献   

11.
The efficiency of triplet energy transfer from the special pair (P) to the carotenoid (C) in photosynthetic reaction centers (RCs) from a large family of mutant strains has been investigated. The mutants carry substitutions at positions L181 and/or M208 near chlorophyll-based cofactors on the inactive and active sides of the complex, respectively. Light-modulated electron paramagnetic resonance at 10 K, where triplet energy transfer is thermally prohibited, reveals that the mutations do not perturb the electronic distribution of P. At temperatures > or = 70 K, we observe reduced signals from the carotenoid in most of the RCs with L181 substitutions. In particular, triplet transfer efficiency is reduced in all RCs in which a lysine at L181 donates a sixth ligand to the monomeric bacteriochlorophyll B(B). Replacement of the native Tyr at M208 on the active side of the complex with several polar residues increased transfer efficiency. The difference in the efficiencies of transfer in the RCs demonstrates the ability of the protein environment to influence the electronic overlap of the chromophores and thus the thermal barrier for triplet energy transfer.  相似文献   

12.
The transfer of electrons between proteins is an essential step in biological energy production. Two protein redox partners are often artificially crosslinked to investigate the poorly understood mechanism by which they interact. To better understand the effect of crosslinking on electron transfer rates, we have constructed dimers of azurin by crosslinking the monomers. The measured electron exchange rates, combined with crystal structures of the dimers, demonstrate that the length of the linker can have a dramatic effect on the structure of the dimer and the electron transfer rate. The presence of ordered water molecules in the protein-protein interface may considerably influence the electronic coupling between redox centers.  相似文献   

13.
Adrenal medullary chromaffin-vesicle membranes contain a transmembrane electron carrier that may provide reducing equivalents for intravesicular dopamine beta-hydroxylase in vivo. This electron transfer system can generate a membrane potential (inside positive) across resealed chromaffin-vesicle membranes (ghosts) by passing electrons from an internal electron donor to an external electron acceptor. Both ascorbic acid and isoascorbic acid are suitable electron donors. As an electron acceptor, ferricyanide elicits a transient increase in membrane potential at physiological temperatures. A stable membrane potential can be produced by coupling the chromaffin-vesicle electron-transfer system to cytochrome oxidase by using cytochrome c. The membrane potential is generated by transferring electrons from the internal electron donor to cytochrome c. Cytochrome c is then reoxidized by cytochrome oxidase. In this coupled system, the rate of electron transfer can be measured as the rate of oxygen consumption. The chromaffin-vesicle electron-transfer system reduces cytochrome c relatively slowly, but the rate is greatly accelerated by low concentrations of ferrocyanide. Accordingly, stable electron transfer dependent membrane potentials require cytochrome c, oxygen, and ferrocyanide. They are abolished by the cytochrome oxidase inhibitor cyanide. This membrane potential drives reserpine-sensitive norepinephrine transport, confirming the location of the electron-transfer system in the chromaffin-vesicle membrane. This also demonstrates the potential usefulness of the electron transfer driven membrane potential for studying energy-linked processes in this membrane.  相似文献   

14.
Summary Artificial bileaflet membranes were formed from extracts of chloroplasts. Gradients of a redox potential were created across the membranes by adding various concentrations of ceric-cerous ions, ferric-ferrous ions, and ascorbic acid to the aqueous solutions on either side of the membrane. When a membrane interposed between solutions of different redox potential was irradiated with light, a potential difference of up to 50 mV was recorded. Analysis of the photoresponse allowed its separation into two components: a photoelectromotive driving force dependent upon the redox potential gradient, and a photoconductive pathway dependent upon the amount of light absorbed by the membranes. There appeared to be a limit to the photocurrent that could be drawn from a membrane at a particular intensity of irradiation; i.e., it did not increase indefinitely with increase of the redox potential gradient. Conductance of the photoconductive pathway was independent of temperature. Phycocyanin added to the aqueous solution participated in the photoresponse in a unidirectional manner that suggested facilitation of electron transport from membrane to acceptors in the aqueous solution.  相似文献   

15.
Light induces the generation of an electrochemical potential difference across the functional membrane of photosynthesis of green plants. Experimental results on the electrochemical phenomena have been largely interpreted in terms of a vectorial alternating electron hydrogen transport system as originally hypothesized by Mitchell.We asked whether or not the reaction coordinate of the electron transport crosses the membrane, and whether or not the protolytic reactions at either side of the membrane can be understood from the protolytic properties of the redox components involved. For this we studied the flash-light-induced protolytic reactions in the outer and the inner aqueous phase of the chloroplast inner disk membranes. Four sites of protolytic reactions were identified, two at either side of the membrane. One of these sites had to be attributed to the reduction of the terminal electron acceptor at the outer side of the membrane. Evidence is presented for the coupling of the other sites to the oxidation of water at the inner side of the membrane, to the reduction of plastoquinone at the outer side and its oxidation at the inner side, respectively. These results support Mitchell's hypothesis for the generation of an electrochemical potential difference by a vectorial electron transport system.  相似文献   

16.
Summary Evidence is presented that the transport of lipid-soluble ions through bilayer membranes occurs in three distinct steps: (1) adsorption to the membranesolution interface; (2) passage over an activation barrier to the opposite interface; and (3) desorption into the aqueous solution. Support for this mechanism comes from a consideration of the potential energy of the ion, which has a minimum in the interface. The formal analysis of the model shows that the rate constants of the individual transport steps can be determined from the relaxation of the electric current after a sudden change in the voltage. Such relaxation experiments have been carried out with dipicrylamine and tetraphenylborate as permeable ions. In both cases the rate-determining step is the jump from the adsorption site into the aqueous phase. Furthermore, it has been found that with increasing ion concentration the membrane conductance goes through a maximum. In accordance with the model recently developed by L. J. Bruner, this behavior is explained by a saturation of the interface, which leads to a blocking of the conductance at high concentrations.  相似文献   

17.
Surface-enhanced resonance Raman scattering (SERRS) spectra were obtained from carotenoids, in the all-trans configuration, located on the antenna complexes of Rhodobacter sphaeroides 2.4.1 membranes. Since resonance Raman (RR) spectra are barely detectable at the concentration that SERRS signals saturate, SERRS represents a very sensitive means of detecting pigments in biological systems. Prominent SERRS spectra of sphaeroidenone were detected in chromatophores (cytoplasmic side out) but not in spheroplast-derived vesicles (periplasmic side out), demonstrating that the carotenoid is asymmetrically located on the cytoplasmic side of the cell membrane. Comparison of peak frequencies from SERRS and RR spectral data suggests that the carotenoids are oriented into the membrane with the methoxy end of the isoprenoid chains located closest to the cytoplasmic side of the intracytoplasmic membrane. This work not only shows that SERRS spectroscopy can provide information on the location of a chromophore in a biological membrane but also for the first time demonstrates that SERRS data can be used to ascertain the orientation of a chromophore within the membrane. This observation greatly increases the potential of this technique for structural analysis of intact membranes at the molecular level.  相似文献   

18.
Evidence for coenzyme Q function in transplasma membrane electron transport   总被引:2,自引:0,他引:2  
Transplasma membrane electron transport activity has been associated with stimulation of cell growth. Coenzyme Q is present in plasma membranes and because of its lipid solubility would be a logical carrier to transport electrons across the plasma membrane. Extraction of coenzyme Q from isolated rat liver plasma membranes decreases the NADH ferricyanide reductase and added coenzyme Q10 restores the activity. Piericidin and other analogs of coenzyme Q inhibit transplasma membrane electron transport as measured by ferricyanide reduction by intact cells and NADH ferricyanide reduction by isolated plasma membranes. The inhibition by the analogs is reversed by added coenzyme Q10. Thus, coenzyme Q in plasma membrane may act as a transmembrane electron carrier for the redox system which has been shown to control cell growth.  相似文献   

19.
The protein matrix of an electron transfer protein creates an electrostatic environment for its redox site, which influences its electron transfer properties. Our studies of Fe-S proteins indicate that the protein is highly polarized around the redox site. Here, measures of deviations of the environmental electrostatic potential from a simple linear dielectric polarization response to the magnitude of the charge are proposed. In addition, a decomposition of the potential is proposed here to describe the apparent deviations from linearity, in which it is divided into a "permanent" component that is independent of the redox site charge and a dielectric component that linearly responds or polarizes to the charge. The nonlinearity measures and the decomposition were calculated for Clostridium pasteurianum rubredoxin from molecular dynamics simulations. The potential in rubredoxin is greater than expected from linear response theory, which implies it is a better electron acceptor than a redox site analog in a solvent with a dielectric constant equivalent to that of the protein. In addition, the potential in rubredoxin is described well by a permanent potential plus a linear response component. This permanent potential allows the protein matrix to create a favorable driving force with a low activation barrier for accepting electrons. The results here also suggest that the reduction potential of rubredoxin is determined mainly by the backbone and not the side chains, and that the redox site charge of rubredoxin may help to direct its folding.  相似文献   

20.
The evolution of photosynthetic energy storage is considered. The primary event in primordial inorganic or organic photoreceptors was charge separation at the expense of light quantum energy. The subsequent improvement of energy storage was attained by separately channeling electrons and “holes” to prevent back reactions. The anisotropic arrangement of photoreceptors in the primary membrane caused a coupling of photochemical charge separation to subsequent ion dislocation and was a prerequisite of primary photophosphorylation. The gradual improvement of the molecular organization of photoreceptor units resulted in antenna and reaction center development. The “hole” was primary located on a peculiar photoreceptor form and the electron passed by tunneling through the chain of intermediate carriers (chlorophylls and pheophytins); thus long-lived charge separation was achieved. The use of the electrons and the “holes” stored in reaction centers for the functioning of the photosynthetic electron transfer chain was realized by cyclic and non-cyclic pathways when the coupling of two photochemical events became the more perfect mechanism to use water molecule as an ultimate electron donor. The appearance of primitive cells inevitably required the coupling of the solar energy conversion mechanism to the reproduction mechanism which used stored solar energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号