首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
The influence of agents, known to affect the membrane dipole potential, phloretin and RH 421, on the multi channel activity of amphotericin B in lipid bilayers of various compositions, was studied. It was shown that the effects were dependent on the membrane’s phospholipid and sphingolipid type. Phloretin enhanced amphotericin B induced steady-state transmembrane current through bilayers made from binary mixtures of POPC (DOPC) and ergosterol and ternary mixture of DPhPC, ergosterol and stearoylphytosphingosine. RH 421 increased steady-state polyene induced transmembrane current through membranes made from binary mixtures of DPhPC (DPhPS) and ergosterol and ternary mixture of DPhPS, ergosterol and stearoylphytosphingosine. It was proposed that the observed effects reflect the fine balance of the interactions between the various components present: amphotericin B, ergosterol, phospholipid, sphingolipid and dipole modifier. The shape of lipid molecules seems to be an important factor impacting the responses of amphotericin B modified bilayers to dipole modifiers. The influence of different phospholipids and sphingolipids on the physical and structural properties of ordered lipid microdomains, enriched in AmB, was also discussed. It was also shown that RH 421 enhanced the antifungal activity of amphotericin B in vitro.  相似文献   

2.

Background

Antimicrobial agents, with different pore-formation mechanisms, may be differently influenced by alteration of the dipolar electric field of a lipid membrane.

Methods

By using electrophysiological measurements on reconstituted lipid membranes, we used alamethicin, melittin and magainin to report on how controlled manipulation of the membrane dipole potential by the styrylpyridinium dye RH 421 affects the kinetic and transport features of peptides within membranes.

Results

Our data demonstrate that the increase of the membrane dipole potential caused by RH 421 decreases the activity and single-channel conductance of alamethicin. Surprisingly, we found that RH 421 increases the activity of melittin and magainin, suggesting that RH 421 may contribute via electrostatic repulsions, among others, to an increase in the monolayer spontaneous curvature of the membrane. We propose that RH 421-induced dipole potential and membrane elasticity changes alter the peptide-induced channel dynamics, and the prevalence of one mechanism over the other for particular classes of peptides is dictated by the electrical and mechanical interactions which rule the pore-formation mechanism of such peptides.

General significance

These results point to a novel paradigm in which electrical and mechanical effects promoted by chemicals which preferentially alter the electrostatics of the membrane, may be employed to help distinguish among various pore-formation mechanisms of membrane-permeabilizing peptides.  相似文献   

3.
The effects of dipole modifiers and their structural analogs on the single channel activity of amphotericin B in sterol-containing planar phosphocholine membranes are studied. It is shown that the addition of phloretin in solutions bathing membranes containing cholesterol or ergosterol decreases the conductance of single amphotericin B channels. Quercetin decreases the channel conductance in cholesterol-containing bilayers while it does not affect the channel conductance in ergosterol-containing membranes. It is demonstrated that the insertion of styryl dyes, such as RH 421, RH 237 or RH 160, in bilayers with either cholesterol or ergosterol leads to the increase of the current amplitude of amphotericin B pores. Introduction of 5α-androstan-3β-ol into a membrane-forming solution increases the amphotericin B channel conductance in a concentration-dependent manner. All the effects are likely to be attributed to the influence of the membrane dipole potential on the conductance of single amphotericin B channels. However, specific interactions of some dipole modifiers with polyene-sterol complexes might also contribute to the activity of single amphotericin B pores. It has been shown that the channel dwell time increases with increasing sterol concentration, and it is higher for cholesterol-containing membranes than for bilayers including ergosterol, 6-ketocholestanol, 7-ketocholestanol or 5α-androstan-3β-ol. These findings suggest that the processes of association/dissociation of channel forming molecules depend on the membrane fluidity.  相似文献   

4.
Resonance-enhanced and normal vibrational Raman spectra were observed for both multilamellar and single-wall vesicle assemblies of dimyristoyl phosphatidylcholine containing amphotericin B, a channel-forming polyene antibiotic, and cholesterol. The decrease in the frequency of the polyene antibiotic CC stretching mode at 1556 cm?1 and the increase in intensity of the CCH in-plane deformation mode at 1002 cm?1 indicate that amphotericin B is ordered in a lipid-cholesterol medium similarly to the solid, but is surrounded by a slightly more polar environment. The intensity of the CC stretching mode I1556 decreases 4-fold during the broadened gel to liquid crystalline phase transition (16–32°C) of dimyristoyl lecithin-cholesterol (4 : 1) multilayers. Other resonance-enhanced vibrations of amphotericin B exhibit similar behavior. For amphotericin B in pure dimyristoyl lecithin multilayer or vesicle systems, however, the vibrational intensity associated with the CC stretching mode remains constant during the melting of lipid hydrocarbon chains. In addition, a third effect occurs in liquid crystalline egg lecithin-cholesterol (4 : 1, mol ratio) multilayers in which I1556 first increases by 25% between 3 and 25°C, in parallel with the loss of active channels, and then remains constant as the temperature increases from 25 to 42°C. This latter intensity pattern is masked in the dimyristoyl lecithin-cholesterol system by the overwhelming effect upon the CC mode from changes in the lipid chain packing characteristics which occur during the phase transition.The broadened phase transition in 4 : 1 dimyristoyl lecithin-cholesterol multilayers (16–32°C), as followed by the ratio of intensities at 2880 and 2850 cm?1 (asymmetric and symmetric methylene C-H stretching modes, respectively) is slightly narrowed by the addition of amphotericin B, and effect from which a binding stoichiometry at 24° of 1 : 1 amphotericin B : cholesterol is estimated. This stoichiometry was confirmed by differential calorimetric scans, which also show the presence of a peak proportional to cholesterol content.Raman I2880/2850 peak height ratios in pure dimyristoyl lecithin bilayers were increased over the 14–38°C range by amphotericin B, a spectral effect which suggests an ordering of the lipid matrix perhaps as a consequence of the polyene binding to the bilayer surface. For bilayers containing cholesterol, the ratios of intensities of the 2935 cm?1 feature, composed mainly of acyl chain terminal methyl and underlying methylene C-H stretching modes, to the 2850 cm?1 feature are significantly increased by amphotericin B. This effect indicates that the antibiotic penetrates the bilayer in the lipid-sterol system.  相似文献   

5.
Nystatin and amphotericin B increase the permeability of thin (<100 A) lipid membranes to ions, water, and nonelectrolytes. Water and nonelectrolyte permeability increase linearly with membrane conductance (i.e., ion permeability). In the unmodified membrane, the osmotic permeability coefficient, Pf, is equal to the tagged water permeability coefficient, (Pd)w; in the nystatin- or amphotericin B-treated membrane, Pf/(Pd)w ≈ 3. The unmodified membrane is virtually impermeable to small hydrophilic solutes, such as urea, ethylene glycol, and glycerol; the nystatin- or amphotericin B-treated membrane displays a graded permeability to these solutes on the basis of size. This graded permeability is manifest both in the tracer permeabilities, Pd, and in the reflection coefficients, σ (Table I). The "cutoff" in permeability occurs with molecules about the size of glucose (Stokes-Einstein radius 4 A). We conclude that nystatin and amphotericin B create aqueous pores in thin lipid membranes; the effective radius of these pores is approximately 4 A. There is a marked similarity between the permeability of a nystatin- or amphotericin B-treated membrane to water and small hydrophilic solutes and the permeability of the human red cell membrane to these same molecules.  相似文献   

6.
Ansamitocins in combination with amphotericin B produced synergistic inhibition on the growth of several yeasts in liquid cultures, Ansamitocin P–3 at 5 µg/ml completely suppressed the growth of Saccharomyces cerevisiae whereas ansamitocin P–3 alone at 50 µg/ml hardly affected growth. Ansamitocin P–4 and maytansine also showed synergistic activity with amphotericin B against S. cerevisiae. The synergism also occurred in cultures of Candida albicans and Hansenula anomala. Combinations of ansamitocin P–3 with various agents revealed that the synergism depended on the specific property of amphotericin B. Ansamitocins showed no interfering activity against regeneration of protoplasts of S. cerevisiae. These results suggest that the limited activity of ansamitocins against these yeasts is due to the membrane permeability barrier of these cells.  相似文献   

7.

Background

The incidence of systemic infections by Saccharomyces cerevisiae has increased in recent years, especially among immunocompromised patients. Amphotericin B, voriconazole or echinocandins have been used with favorable outcome against systemic infections by this fungus. However, clinical experience is limited and no in vivo studies have been conducted.

Aims

We evaluated the in vitro activity of nine antifungal compounds against S. cerevisiae and the in vivo efficacy of those three antifungals showing the highest in vitro activity by using a murine model of systemic infection.

Methods

Minimal inhibitory concentrations (MICs) were determined by the microdilution method against three strains of S. cerevisiae. After intravenous infection with 5 × 107 CFUs, animals received liposomal amphotericin B (5 mg/kg), voriconazole (25 mg/kg) or anidulafungin (5 mg/kg). Treatment efficacy was assessed by determining of CFUs/g in liver, kidney, brain, lung and spleen.

Results

5-Fluorocytosine was the most in vitro active compound followed by amphotericin B, voriconazole and anidulafungin. The in vivo study showed that liposomal amphotericin B was the most effective drug driving highest fungal clearance.

Conclusions

All treatments reduced the fungal load in comparison to the control group, being liposomal amphotericin B the most effective drug followed by anidulafungin and finally voriconazole.  相似文献   

8.
It was investigated whether there was a critical degree of dryness for induction of genetic changes by drying. Saccharomyces cerevisiae cells were dried in air of 0, 33, 53 and 76% relative humidity (RH). The frequencies of mitotic recombination at ade2, of gene conversion at leul, and of gene mutation at can1 were measured in X2447, XS1473 and S288C strains, respectively.After the cells had been dried at 0% RH for 4 h the frequencies of the genetic changes at ade2, leul and can1 were, respectively, 56, 7 and 3.5 times higher than each spontaneous frequency. Induction rates, defined as the frequencies of the induced genetic changes per unit time (1 h) of drying, were greatly decreased with increase in RH. Partial drying in air of 76% RH up to 4 and 8 h induced no genetic change at ade2 and leul, respectively. It was concluded, therefore, that drying at a certain RH between 53 and 76% gave the critical degree of dryness of cells for the induction of the genetic changes. The water contents of cells (g water per g dry material) were 12% at 53% RH and 21% at 76% RH, whereas the water content of native cells was 212%. Removal of a large amount of cellular water had no effect on the induction of the genetic changes.UV sensitivity of partially dried cells of X2447 for the induction of the genetic change at ade2 drastically increased with decrease in RH between 76 and 53%. The drastic change in the UV sensitivity suggested that photochemical reactivity of DNA of chromosome XV, in which the ade2 locus is located, changed between 76 and 53% RH. It seems that the genetic changes were induced only in the low RH region where DNA in vivo had a different photochemical reactivity.  相似文献   

9.
The charge-transporting activity of the Na+,K+-ATPase depends on its surrounding electric field. To isolate which steps of the enzyme’s reaction cycle involve charge movement, we have investigated the response of the voltage-sensitive fluorescent probe RH421 to interaction of the protein with BTEA (benzyltriethylammonium), which binds from the extracellular medium to the Na+,K+-ATPase’s transport sites in competition with Na+ and K+, but is not occluded within the protein. We find that only the occludable ions Na+, K+, Rb+, and Cs+ cause a drop in RH421 fluorescence. We conclude that RH421 detects intramembrane electric field strength changes arising from charge transport associated with conformational changes occluding the transported ions within the protein, not the electric fields of the bound ions themselves. This appears at first to conflict with electrophysiological studies suggesting extracellular Na+ or K+ binding in a high field access channel is a major electrogenic reaction of the Na+,K+-ATPase. All results can be explained consistently if ion occlusion involves local deformations in the lipid membrane surrounding the protein occurring simultaneously with conformational changes necessary for ion occlusion. The most likely origin of the RH421 fluorescence response is a change in membrane dipole potential caused by membrane deformation.  相似文献   

10.
The charge-transporting activity of the Na+,K+-ATPase depends on its surrounding electric field. To isolate which steps of the enzyme’s reaction cycle involve charge movement, we have investigated the response of the voltage-sensitive fluorescent probe RH421 to interaction of the protein with BTEA (benzyltriethylammonium), which binds from the extracellular medium to the Na+,K+-ATPase’s transport sites in competition with Na+ and K+, but is not occluded within the protein. We find that only the occludable ions Na+, K+, Rb+, and Cs+ cause a drop in RH421 fluorescence. We conclude that RH421 detects intramembrane electric field strength changes arising from charge transport associated with conformational changes occluding the transported ions within the protein, not the electric fields of the bound ions themselves. This appears at first to conflict with electrophysiological studies suggesting extracellular Na+ or K+ binding in a high field access channel is a major electrogenic reaction of the Na+,K+-ATPase. All results can be explained consistently if ion occlusion involves local deformations in the lipid membrane surrounding the protein occurring simultaneously with conformational changes necessary for ion occlusion. The most likely origin of the RH421 fluorescence response is a change in membrane dipole potential caused by membrane deformation.  相似文献   

11.
Recently, we showed that the effect of dipole modifiers (flavonoids and styrylpyridinium dyes) on the conductance of single amphotericin B (AmB) channels in sterol-containing lipid bilayers primarily resulted from changes in the membrane dipole potential. The present study examines the effect of dipole modifiers on the AmB multi-channel activity. The addition of phloretin to cholesterol-containing membranes leads to a significant increase in the steady-state AmB-induced transmembrane current. Quercetin significantly decreases and RH 421 increases the current through ergosterol-containing bilayers. Other tested flavonoids and styrylpyridinium dyes do not affect the channel-forming activity of AmB independently on the sterol composition of the bilayers. The effects obtained in these trials may instead be attributed to the direct interaction of dipole modifiers with AmB/sterol complexes and not to the effect of dipole potential changes. The presence of double bonds in the Δ7 and Δ22 positions of sterol molecules, the number of conjugated double bonds and amino sugar residues in polyene molecules, and the conformation and adsorption plane of dipole modifiers are important factors impacting this interaction.  相似文献   

12.
A technique of measuring of the light-induced transients of the gramicidin-mediated electric current across a membrane in the presence of a photosensitizer has been applied for the study of the effect of agents modifying the dipole potential of a bilayer lipid membrane (phloretin, 6-ketocholestanol, and RH421) on the processes of the gramicidin channel dissociation and formation. It is shown that phloretin, known to lower the dipole potential, decelerates the flash-induced decrease in the current, whereas 6-ketocholestanol and RH421, known to raise the dipole potential, accelerate the current decrease. It is revealed that the addition of phloretin leads to a decrease in the dissociation rate constant, whereas addition of either 6-ketocholestanol or RH421 causes an increase in this constant. Single-channel data show that phloretin brings about an increase in the lifetime of the gramicidin channels, whereas RH421 produces a more complicated effect. It is conclude that the dipole potential affects the process of channel dissociation, presumably via the influence on the movement of the dipoles of gramicidin molecules through the layer of the dipole potential drop near the membrane-water interface.  相似文献   

13.
Visceral leishmaniasis is a vector-borne disease caused by an obligate intra-macrophage protozoan parasite Leishmania donovani. The molecular mechanisms involved in internalization of Leishmania are still poorly understood. Amphotericin B and its formulations are considered as the best existing drugs against visceral leishmaniasis and are being increasingly used. The reason for its antileishmanial activity is believed to be its ability to bind ergosterol found in parasite membranes. In case of in vivo amphotericin B treatment, both host macrophages and parasites are exposed to amphotericin B. The effect of amphotericin B treatment could therefore be due to a combination of its interaction with both sterols i.e., ergosterol of Leishmania and cholesterol of host macrophages. We report here that cholesterol complexation by amphotericin B markedly inhibits binding of L. donovani promastigotes to macrophages. These results represent one of the first reports on the effect of amphotericin B on the binding of Leishmania parasites to host macrophages. Importantly, these results offer the possibility of reevaluating the mechanism behind the effectiveness of current therapeutic strategies that employ sterol-complexing agents such as amphotericin B to treat leishmaniasis.  相似文献   

14.
The primary goal of this study was to determine the conditions required for the effective inactivation of Bacillus anthracis spores on materials by using methyl bromide (MeBr) gas. Another objective was to obtain comparative decontamination efficacy data with three avirulent microorganisms to assess their potential for use as surrogates for B. anthracis Ames. Decontamination tests were conducted with spores of B. anthracis Ames and Geobacillus stearothermophilus, B. anthracis NNR1Δ1, and B. anthracis Sterne inoculated onto six different materials. Experimental variables included temperature, relative humidity (RH), MeBr concentration, and contact time. MeBr was found to be an effective decontaminant under a number of conditions. This study highlights the important role that RH has when fumigation is performed with MeBr. There were no tests in which a ≥6-log10 reduction (LR) of B. anthracis Ames was achieved on all materials when fumigation was done at 45% RH. At 75% RH, an increase in the temperature, the MeBr concentration, or contact time generally improved the efficacy of fumigation with MeBr. This study provides new information for the effective use of MeBr at temperatures and RH levels lower than those that have been recommended previously. The study also provides data to assist with the selection of an avirulent surrogate for B. anthracis Ames spores when additional tests with MeBr are conducted.  相似文献   

15.
ABCA1 belongs to the A class of ABC transporter, which is absent in yeast. ABCA1 elicits lipid translocation at the plasma membrane through yet elusive processes. We successfully expressed the mouse Abca1 gene in Saccharomyces cerevisiae. The cloned ABCA1 distributed at the yeast plasma membrane in stable discrete domains that we name MCA (membrane cluster containing ABCA1) and that do not overlap with the previously identified punctate structures MCC (membrane cluster containing Can1p) and MCP (membrane cluster containing Pma1p). By comparison with a nonfunctional mutant, we demonstrated that ABCA1 elicits specific phenotypes in response to compounds known to interact with membrane lipids, such as papuamide B, amphotericin B and pimaricin. The sensitivity of these novel phenotypes to the genetic modification of the membrane lipid composition was studied by the introduction of the cho1 and lcb1-100 mutations involved respectively in phosphatidylserine or sphingolipid biosynthesis in yeast cells. The results, corroborated by the analysis of equivalent mammalian mutant cell lines, demonstrate that membrane composition, in particular its phosphatidylserine content, influences the function of the transporter. We thus have reconstituted in yeast the essential functions associated to the expression of ABCA1 in mammals and characterized new physiological phenotypes prone to genetic analysis. This article is a part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

16.
The effects of amphotericin B upon the organization and dynamics of multibilayer membranes of dimyristoylphosphatidylcholine (DMPC) were investigated by means of 2H-NMR. At high amphotericin B concentrations (30 mol% with respect to the lipid) and at temperatures above 25°C, DMPC experiences two different environments which are in slow exchange on the 2H-NMR time scale. In one of these, the lipid is immobilized by the antibiotic, in a molar ratio of approximately 1:1, whereas the lipid unsequestered by amphotericin B is more ordered than in its pure state. This ordering effect is perceived at relatively low antibiotic doses (4%). The local lipid order, and the relative percentage, of sequestered DMPC, are temperature-independent (up to 65°C), whereas the ordering of the unsequestered lipid domain is not. The perturbation induced by amphotericin B is manifest similarly at the edges as well as in the center of the bilayer. Antibiotic addition leads to large decreases in the transverse relaxation time, T2, of the labelled lipid, but not in the spin-lattice relaxation time, T1. This indicates an increased density of slow motional modes and little change in rapid motions.  相似文献   

17.
The peptidomimetic LTX109 (arginine-tertbutyl tryptophan-arginine-phenylethan) was previously shown to have antibacterial properties. Here, we investigated the activity of this novel antimicrobial peptidomimetic on the yeast Saccharomyces cerevisiae. We found that LTX109 was an efficient fungicide that killed all viable cells in an exponentially growing population as well as a large proportion of cells in biofilm formed on an abiotic surface. LTX109 had similar killing kinetics to the membrane-permeabilizing fungicide amphotericin B, which led us to investigate the ability of LTX109 to disrupt plasma membrane integrity. S. cerevisiae cells exposed to a high concentration of LTX109 showed rapid release of potassium and amino acids, suggesting that LTX109 acted by destabilizing the plasma membrane. This was supported by the finding that cells were permeable to the fluorescent nucleic acid stain SYTOX Green after a few minutes of LTX109 treatment. We screened a haploid S. cerevisiae gene deletion library for mutants resistant to LTX109 to uncover potential molecular targets. Eight genes conferred LTX109 resistance when deleted and six were involved in the sphingolipid biosynthetic pathway (SUR1, SUR2, SKN1, IPT1, FEN1 and ORM2). The involvement of all of these genes in the biosynthetic pathway for the fungal-specific lipids mannosylinositol phosphorylceramide (MIPC) and mannosyl di-(inositol phosphoryl) ceramide (M(IP)2C) suggested that these lipids were essential for LTX109 sensitivity. Our observations are consistent with a model in which LTX109 kills S. cerevisiae by nonspecific destabilization of the plasma membrane through direct or indirect interaction with the sphingolipids.  相似文献   

18.
Tolerance of human pathogenic fungi to antifungal drugs is an emerging medical problem. We show how strains of the causative agent of human aspergillosis, Aspergillus fumigatus, tolerant to cell wall-interfering antimycotic drugs become susceptible through chemosensitization by natural compounds. Tolerance of the A. fumigatus mitogen-activated protein kinase (MAPK) mutant, sakAΔ, to these drugs indicates the osmotic/oxidative stress MAPK pathway is involved in maintaining cell wall integrity. Using deletion mutants of the yeast, Saccharomyces cerevisiae, we first identified thymol and 2,3-dihydroxybenzaldehyde (2,3-D) as potent chemosensitizing agents that target the cell wall. We then used these chemosensitizing agents to act as synergists to commercial antifungal drugs against tolerant strains of A. fumigatus. Thymol was an especially potent chemosensitizing agent for amphotericin B, fluconazole or ketoconazole. The potential use of natural, safe chemosensitizing agents in antifungal chemotherapy of human mycoses as an alternative to combination therapy is discussed.  相似文献   

19.
Growth patterns and intracellular Ca2+ concentrations in the mutant strain Aspergillus awamori 66A containing a recombinant aequorin gene were studied in the presence of a permeabilizing fungicidal agent amphotericin B. The cell response, i.e., changes in the growth and development of the fungus (initiation of spore germination, mycelial growth, and intensity of sporulation) was dose-dependent. Low concentrations of amphotericin B (2.5 μM) stimulated spore germination: the number of germinating spores was 2–3 times higher than in the control (without the fungicide). At higher amphotericin concentrations (20 μM) spore germination was inhibited. Amphotericin B had a dose-dependent effect on mycelial growth and sporulation intensity on solid Vogel medium. Intracellular Ca2+ concentrations in the presence of amphotericin B were investigated using the luminescence of the photoprotein aequorin. High concentrations of amphotericin B (10 and 20 μM) were shown to cause an instantaneous increase in Ca2+ concentrations compared to the control and lower amphotericin concentration (2.5 μM). Ca2+ concentrations remained elevated throughout the experiment and correlated with the inhibition of mycelial growth and development.  相似文献   

20.
Cellobiose lipid B, a natural fungicide produced by the yeast Pseudozyma fusiformata, induces the leakage of K+ and ATP from cells of Saccharomyces cerevisiae. The presence of glucose decreases the effective concentration of cellobiose lipid B. The concentration of cellobiose lipid B was selected that results in a high rate of K+ leakage and a five-to sevenfold decrease in the intracellular ATP content, while the accumulation of acid-soluble polyphosphates decreased only by half. These results indicate the possibility of synthesis of these polymers which is independent of the ATP level and of the ion gradient on plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号