首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs) can be equally proper in the treatment of neurodegenerative diseases. However, ADSCs have practical benefits. In this study, we attempted to induce the secretion of neurotrophic factors (NTF) in human ADSCs. We then evaluated the effects of co-culture with NTF secreting cells in neural differentiation of human ADSCs. Isolated human ADSCs were induced to neurotrophic factors secreting cells. To evaluate the in vitro effects of NTF-secreting ADSCs on neurogenic differentiation of ADSCs, we used neurogenic induction medium (control group), the combination of neurogenic medium and conditioned medium, or co-cultured NTF-secreting ADSCs which were encapsulated in alginate beads (co-culture) for 7 days. ELISA showed increased (by about 5 times) release of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in NTF-secreting ADSCs compared to human ADSCs. Real time RT-PCR analysis revealed that NTF-secreting ADSCs highly expressed NGF and BDNF. In addition, co-culture with NTF-secreting ADSCs could also promote neuronal differentiation relative to gliogenesis. Overall, NTF-secreting ADSCs secrete a range of growth factors whose levels in culture could promote neuronal differentiation and could support the survival and regeneration in a variety of neurodegenerative diseases.  相似文献   

2.
The ability of mesenchymal stem cells (MSCs) to differentiate into neuronal lineage determines the potential of these cells as a substrate for a cell replacement therapy. In this paper we compare the neurogenic potential of the MSCs from different donors, isolated from the bone marrow (BMSC), subcutaneous adipose tissue (AD MSC) and menstrual blood (eMSC). It was established that the native eMCSs, BMSCs and AD MSCs express neuronal marker β-III-tubulin with a frequency of 90, 50 and 14%, respectively. Also we showed that the eMSCs have a high endogenous level of brain-derived neurotrophic factor (BDNF), whereas the BMSCs and the AD MSCs are characterized by low basal BDNF levels. An induction of neuronal differentiation in the studied MSCs using differentiation medium containing B27 and N2 supplements, 5-azacytidine, retinoic acid, IBMX and dbcAMP induced changes in the cells morphology, the increase of β-III-tubulin expression, and the appearance of neuronal markers GFAP, NF-H, NeuN and MAP2. During the differentiation the BDNF secretion was significantly enhanced in the BMSCs and decreased in the eMSCs cultures. However, no correlation between the basal and induced levels of the neuronal markers expression in the studied MSCs has been established.  相似文献   

3.
Mesenchymal stem cells (MSCs) exists low efficiency to trans‐differentiate into other germinal layer cell types. One key issue is to discover the effect of important factor on MSCs differentiation abiltiy. In this study, we investigated the role and mechanism of epiregulin (EREG) on the osteogenic differentiation and neurogenic trans‐differentiation in adipose‐derived stem cells (ADSCs). We discovered that the depletion of EREG inhibited the osteogenic differentiation in vitro. And 25 ng/mL recombinant human epiregulin protein (rhEREG) effectively improved the osteogenic differentiation of EREG‐depleted‐ADSCs. Depletion of EREG promoted the formation of neural spheres, and increased the expressions of nestin, βIII‐tubulin, NeuroD, NCAM, TH, and NEF in ADSCs. Then, 25 ng/mL rhEREG significantly inhibited these neurogenic differentiation indicators. Inhibition of p38 MAPK, JNK, or Erk1/2 signaling pathway separately, blocked the rhEREG‐enhanced osteogenic differentiation ability and the rhEREG‐inhibited neurogenic trans‐differentiation ability of ADSCs. In conclusions, EREG promoted the osteogenic differentiation and inhibited the neurogenic trans‐differentiation potentials of ADSCs via MAPK signaling pathways.  相似文献   

4.
In this study, we characterize new multipotent human mesenchymal stem cell lines (MSCs) derived from desquamated (shedding) endometrium of menstrual blood. The isolated endometrial MSC (eMSC) is an adhesive to plastic heterogeneous population composed mainly of endometrial glandular and stromal cells. The established cell lines meet the criteria of the International Society for Cellular Therapy for defining multipotent human MSCs of any origin. The eMSCs have positive expression of CD13, CD29, CD44, CD73, CD90, and CD105 markers and lack hematopoietic cell surface antigens CD19, CD34, CD45, CD117, CD130, and HLA-DR (class II). Multipotency of the established eMSCs is confirmed by their ability to differentiate into other mesodermal lineages, such as osteocytes and adipocytes. In addition, the isolated eMSCs partially (over 50%) express the pluripotency marker SSEA-4. However, they do not express Oct-4. Immunofluorescent analysis of the derived cells revealed the expression of the neural precursor markers nestin and β-III-tubulin. This suggests a neural predisposition of the established eMSCs. These cells are characterized by a high proliferation rate (doubling time 22–23 h) and a high colony-forming efficiency (about 60%). In vitro, the eMSCs undergo more than 45 population doublings without karyotypic abnormalities. We demonstrate that mitotically inactivated eMSCs are perfect feeder cells for maintenance of human embryonic stem cell lines (hESCs) C612 and C910. The eMSCs, being a feeder culture, sustain the hESC pluripotent status that verified by expression of Oct-4, alkaline phosphatase and SSEA-4 markers. The hESCs cocultured with the eMSCs retain their morphology and proliferative rate for more than 40 passages and exhibit the capability for spontaneous differentiation into embryoid bodies comprising three embryonic germ layers. Thus, an easy and noninvasive isolation of the eMSCs from menstrual blood, their multipotency and high proliferative activity in vitro without karyotypic abnormalities demonstrate the potential of use of these stem cells in regenerative medicine. Using the derived eMSCs as the feeder culture eliminates the risks associated with animal cells while transferring hESCs to clinical setting.  相似文献   

5.
In this study, we compared the ability of human mesenchymal stem cells (eMSCs) derived from menstrual blood and mesenchymal stem cells (MSCs) from other tissues to differentiate into decidual cells in vitro. It was demonstrated that, during differentiation, secretion of prolactin and insulin-like growth factor binding protein-1 (key decidualization markers) markedly increased in eMSCs slightly augmented in bone marrow MSC (BM-MSCs) and did not change in MSCs from adipose tissue (AT-MSCs). Thus, eMSCs exhibited higher capacity for differentiation into decidual cells than BM-MSCs or AT-MSCs. This makes eMSCs promising for application in cellular therapy of infertility associated with insufficient decidualization of endometrium.  相似文献   

6.
It is reported that adipose-derived stem cells (ADSCs) had multilineage differentiation potential, and could differentiate into neuron-like cells induced by special induction media, which may provide a new idea for restoration of erectile dysfunction (ED) after cavernous nerve injury. The aim of this research was to explore the neuronal differentiation potential of ADSCs in vitro. ADSCs isolated from inguinal adipose tissue of rat were characterized by flow cytometry, and results showed that ADSCs were positive for mesenchymal stem cell markers CD90 and CD44, but negative for hematopoietic stem cell markers. ADSCs maintained self-renewing capacity and could differentiate into adipocytes and neurocytes under special culture condition. In this research, two methods were used to induce ADSCs. In method 1, ADSCs were treated with the preinduction medium including epithelium growth factor, basic fibroblast growth factor, and brain derived neurotrophic factor (BDNF) for 3?days, then with the neurogenic induction medium containing isobutylmethylxanthine, indomethacin, and insulin. While in method 2, BDNF was not used to treat ADSCs. After induction, neuronal differentiation of ADSCs was evaluated. Neuronal markers, glial fibrillary acidic protein (GFAP), and ??-tubulin III (Tuj-1) were detected by immunofluorescence and Western Blot analyses. The expressions of GFAP and Tuj-1 in method 1 were obviously higher then those in method 2. In addition, the positive rate of the neuron-like cells was higher in method 1. It suggested that ADSCs are able to differentiate into neural-like cells in vitro, and the administration of BDNF in the preinduction medium may provide a new way to modify the culture method for getting more neuron-like cells in vitro.  相似文献   

7.
MSCs (mesenchymal stem cells) have attracted attention as a promising tool for regenerative medicine and transplantation therapy. MSCs exert neuroprotective effects by secreting a number of factors in vitro and in vivo. Similar characteristics are found in ADSCs (adipose‐derived stem cells) and BMSCs (bone marrow stromal cells). Multipotent capability, easy accessibility and rapid proliferation of ADSCs have been established. Our main objective was to compare cell viability, growth rate, expression of neurotrophic factors and nestin genes in ADSCs and BMSCs. Cell doubling time and proliferation rate indicate that ADSCs has a higher proliferation rate than BMSCs. ADSCs and BMSCs express a similar pattern of CD71 and CD90 markers. Nestin immunostaining showed that ADSCs and BMSCs are immunopositive. The expression of neurotrophic factors genes in ADSCs proved similar to that of BMSCs genes. Thus adipose tissue stem cells with a high proliferation rate can express nestin and neurotrophic factor genes. Therefore ADSCs may be useful in future cell replacement therapies and help improve neurodegenerative diseases.  相似文献   

8.
Cyclin-dependent kinase (Cdk) in complex with a corresponding cyclin plays a pivotal role in neurogenic differentiation. In particular, Cdk4 activity acts as a signaling switch to direct human mesenchymal stem cells (MSCs) to neural transdifferentiation. However, the molecular evidence of how Cdk4 activity converts MSCs to neurogenic lineage remains unknown. Here, we found that Cdk4 inhibition in human MSCs enriches the populations of neural stem and progenitor pools rather than differentiated glial and neuronal cell pools. Interestingly, Cdk4 inhibition directly inactivates Smads and subsequently STAT3 signaling by hypophosphorylation, and both Cdk4 and Smads levels are linked during the processes of neural transdifferentiation and differentiation. In summary, our results provide novel molecular evidence in which Cdk4 inhibition leads to directing human MSCs to a multipotent neurogenic fate by inactivating Smads-STAT3 signaling.  相似文献   

9.
The aim of this study was to compare the neural differentiation potential and the expression of neurotrophic factors (NTFs) in differentiated adipose-derived stem cells (ADSCs) using three established induction protocols, serum free (Protocol 1), chemical reagents (Protocol 2), and spontaneous (Protocol 3) protocols. Protocol 1 produced the highest percentage of mature neural-like cells (MAP2ab+). Protocol 2 showed the highest percentage of immature neural-like cells (β-tubulin III+), but the neural-like state was transient and reversible. Protocol 3 caused ADSCs to differentiate spontaneously into immature neural-like cells, but not into mature neural cell types. The neural-like cells produced by Protocol 1 lived the longest in culture with little cell death, but Protocol 2 and 3 led to the significant cell death. Therefore, Protocol 1 is the most efficient among these protocols. Additionally, soon after differentiation, the mRNA levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in dADSCs were sharply decreased by Protocol 1 and 2 (acute induction protocol), but not by Protocol 3 (chronic induction protocol). The results indicate that NTFs played an important role in neural differentiation via acute responses to NGF and BDNF, but not chronically during the transdifferentiation process.  相似文献   

10.
11.
Aging has less effect on adipose-derived mesenchymal stem cells (ADSCs) than on bone marrow-derived mesenchymal stem cells (BMSCs), but whether the fact holds true in stem cells from elderly patients with osteoporotic fractures is unknown. In this study, ADSCs and BMSCs of the same donor were harvested and divided into two age groups. Group A consisted of 14 young patients (36.4 ± 11.8 years old), and group B consisted of eight elderly patients (71.4 ± 3.6 years old) with osteoporotic fractures. We found that the doubling time of ADSCs from both age groups was maintained below 70 hrs, while that of BMSCs increased significantly with the number of passage. When ADSCs and BMSCs from the same patient were compared, there was a significant increase in the doubling time of BMSCs in each individual from passages 3 to 6. On osteogenic induction, the level of matrix mineralization of ADSCs from group B was comparable to that of ADSCs from group A, whereas BMSCs from group B produced least amount of mineral deposits and had a lower expression level of osteogenic genes. The p21 gene expression and senescence-associated β-galactosidase activity were lower in ADSCs compared to BMSCs, which may be partly responsible for the greater proliferation and differentiation potential of ADSCs. It is concluded that the proliferation and osteogenic differentiation of ADSCs were less affected by age and multiple passage than BMSCs, suggesting that ADSCs may become a potentially effective therapeutic option for cell-based therapy, especially in elderly patients with osteoporosis.  相似文献   

12.
The bone marrow represents the most common source from which to isolate mesenchymal stem cells (MSCs). They can be obtained directly from patients and successfully induced to form various differentiated cell types. In addition, cell-based transplantation therapies have been proven to be promising strategies for curing disease of the nerve system. Therefore, it was particularly important to establish an easy and feasible method for the isolation, purification, and differentiation of bone marrow stromal cells (BMSCs). The aim of this study was to isolate and characterize putative bone marrow derived MSCs from Sprague–Dawley (SD) rats. Furthermore, differentiation effects were compared between the GDNF-induction group and the BDNF-induction group. Of these, BMSCs were isolated from the SD rats in a traditional manner, and identified based on plastic adherence, morphology, and surface phenotype assays. After induction with GDNF and BDNF, viability of BMSCs was detected by MTT assay and neuronal differentiation of BMSCs was confirmed by using immunofluorescence and Western blotting. Besides, the number of BMSCs that obviously exhibited neuronal morphology was counted and the results were compared between the GDNF-induction group and BDNF-induction groups. Our results indicate that direct adherence was a simple and convenient method for isolation and cultivation of BMSCs. Furthermore, BMSCs can be induced in vitro to differentiate into neuronal cells by using GDNF, which could achieve a more persistent and stable inducing effect than when using BDNF.  相似文献   

13.
Background aimsThe suppression of cell apoptosis using a biodegradable scaffold to replace the missing or altered extracellular matrix (ECM) could increase the survival of transplanted cells and thus increase the effectiveness of cell therapy.MethodsWe studied the best conditions for the proliferation and differentiation of human bone marrow stromal cells (hBMSC) when cultured on different biologic scaffolds derived from fibrin and blood plasma, and analyzed the best concentrations of fibrinogen, thrombin and calcium chloride for favoring cell survival. The induction of neural differentiation of hBMSC was done by adding to these scaffolds different growth factors, such as nerve growth factor (NGF), brain-derived-neurotrophic factor (BDNF) and retinoic acid (RA), at concentrations of 100 ng/mL (NGF and BDNF) and 1 μ/mL (RA), over 7 days.ResultsAlthough both types of scaffold allowed survival and neural differentiation of hBMSC, the results showed a clear superiority of platelet-rich plasma (PRP) scaffolds, mainly after BDNF administration, allowing most of the hBMSC to survive and differentiate into a neural phenotype.ConclusionsGiven that clinical trials for spinal cord injury using hBMSC are starting, these findings may have important clinical applications.  相似文献   

14.
Bone marrow MSCs (mesenchymal stem cells) can differentiate into various tissue cells, including epithelial cells. This presents interesting possibilities for cellular therapy, but the differentiation efficiency of MSCs is very low. We have explored specific inducing factors to improve the epithelial differentiation efficiency of MSCs. Under inducing conditions, MSCs differentiated into epithelial cells and expressed several airway epithelial markers using RTE (rat tracheal epithelial) cell secretions. Rat cytokine antibody array was used to detect cytokines of the RTE secretion components, in which 32 kinds of protein were found. Seven proteins [TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), VEGF (vascular endothelial growth factor), BDNF (brain-derived neurotrophic factor), TGFβ1 (transforming growth factor β1), MMP-2 (metalloproteinases-2), OPN (osteopontin) and activin A in RTE secretions] were assayed using ELISA kits. The four growth factors (VEGF, BDNF, TGFβ1 and activin A) were involved in regulating stem cell growth and differentiation. We speculated that these four play a vital role in the differentiation of MSCs into epithelial cells by triggering appropriate signalling pathways. To induce epithelial differentiation, MSCs were cultured using VEGF, BDNF, TGFβ1 and activin A. Differentiated MSCs were characterized both morphologically and functionally by their capacity to express specific markers for epithelial cells. The data demonstrated that MSCs can differentiate into epithelial cells induced by these growth factors.  相似文献   

15.
Myostation (MSTN), which is primarily expressed in muscle, plays an important role in myogenic and adipogenic cells. However, there is little information about whether MSTN displays different roles between adipose-derived stem cells (ADSCs) and muscle satellite cells (MSCs). The two kinds of cells can both exist in the muscle and differentiate into adiposities. In this research, we isolated ADSCs and MSCs from porcine fat tissues and semitendinosus muscle, respectively, to investigate the effect of MSTN on the adipogenesis of those cells. ADSCs and MSCs were treated with recombinant human MSTN during the induction of adipogenesis or before the induction of differentiation. Then, we evaluated adipogenesis by Oil Red O staining and assessed the expression patterns of adipocyte-specific fatty acid binding protein (aP2) and peroxisome proliferator-activated receptor (PPAR) γ using real-time polymerase chain reaction methods. Our results indicated that the treatment with MSTN before or during the induction of differentiation in MSCs could both inhibit the adipogenesis. However, the treatment with MSTN only during the induction of differentiation in ADSCs could suppress the adipogenesis. Those results showed that MSTN had different roles in the adipogenesis of ADSCs and MSCs. It can shed new light on the origin of adipocyte located in muscle.  相似文献   

16.
Mesenchymal stem cells (MSCs) are multi-potent, and the chondrogenesis of MSCs is affected by mechanical stimulation. The aim of this study was to investigate, using a rotary cell culture system (RCCS) bioreactor, the effects of microgravity on the chondrogenic differentiation of human adipose-derived MSCs (ADSCs), which were cultured in pellets with or without the chondrogenic growth factor TGF-β1. In addition, we evaluated the role of the p38 MAPK pathway in this process. The real-time PCR and histological results show that microgravity has a synergistic effect on chondrogenesis with TGF-β1. The p38 MAPK pathway was activated by TGF-β1 alone and was further stimulated by microgravity. Inhibition of p38 activity with SB203580 suppressed chondrocyte-specific gene expression and matrix production. These findings suggest that the p38 MAPK signal acts as an essential mediator in the microgravity-induced chondrogenesis of ADSCs.  相似文献   

17.
18.
骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)已被广泛应用于治疗脊髓损伤,但目前对其治疗机制了解甚少。BMSCs被移植至脊髓钳夹损伤模型大鼠,以研究其保护作用。通过LFB(Luxol fast blue)染色、锇酸染色、TUNEL(Td T-mediated d UTP nick-end labeling)染色和透射电镜对白质有髓神经纤维进行观察。免疫印迹检测BMSCs移植对脑源性神经营养因子(Brain derived neurotrophic factor,BDNF)和caspase 3蛋白表达的影响。通过脊髓损伤后1、7、14 d三个时间点移植BMSCs并进行后肢运动评分(Basso,beattie and bresnahan;BBB评分)和CNPase(2′,3′-cyclic-nucleotide 3′-phosphodiesterase)、髓鞘碱性蛋白(Myelin basic protein,MBP)、caspase 3蛋白水平的检测。免疫荧光观察BMSCs移植到受损脊髓后分化情况及CNPase-caspase 3~+共表达情况。骨髓间充质干细胞移植7 d后,部分移植的BMSCs可表达神经元和少突胶质细胞标记物,大鼠后肢运动能力和髓鞘超微结构特征均明显改善。骨髓间充质干细胞移植后BDNF蛋白表达水平增加,caspase 3蛋白表达水平则降低。相对于脊髓损伤后1 d和14 d,7 d移植BMSCs后MBP和CNPase蛋白表达水平最高;caspase 3蛋白表达水平则最低。骨髓间充质干细胞移植后CNPase-caspase 3~+细胞散在分布于脊髓白质。结果表明,急性脊髓损伤后,BMSCs移植到受损脊髓有分化为神经元和少突胶质细胞的倾向,并促进BDNF的分泌介导抗少突胶质细胞凋亡而对神经脱髓鞘病变有保护作用,且最佳移植时间为脊髓损伤后7 d。  相似文献   

19.
Neurotrophins (NTs), a family of proteins including nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3, and neurotrophin-4, are essential for neural growth, survival, and differentiation, and are therefore crucial for brain development. Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by problems of inattention and/or hyperactivity-impulsivity. ADHD is one of the most common childhood onset psychiatric disorders. Studies have suggested that both genetic and environmental factors influence the development of the disorder, although the precise causes of ADHD have not yet been identified. In this review, we assess the role of NTs in the pathophysiology of ADHD. Preclinical evidence indicates that BDNF knockout mice are hyperactive, and an ADHD rodent model exhibited decreased cerebral BDNF levels. Several lines of evidence from clinical studies, including blood level and genetic studies, have suggested that NTs are involved in the pathogenesis of ADHD and in the mechanism of biological treatments for ADHD. Future directions for research are proposed, such as using blood NTs as ADHD biomarkers, optimizing NT genetic studies in ADHD, considering NTs as a link between ADHD and other comorbid mental disorders, and investigating methods for optimally modulating NT signaling to discover novel therapeutics for treating ADHD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号