首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical studies of myelin in Wallerian degeneration of rat optic nerve   总被引:3,自引:1,他引:2  
Abstract— Wallerian degeneration of the optic nerves of the rat was induced by removal of the eyes. After 54, 66, 76 or 90 days of degeneration a myelin fraction of the nerves was obtained by the procedure of Laatsch et al. (1962). The yield of myelin from the degenerated nerves was decreased, but the isolated myelin appeared to be morphologically normal. The proportion of cholesterol in the myelin lipids was slightly increased, whereas that of the ethanolamineglycerophosphatides was decreased and galactolipids were normal. After one‘cycle’of myelin purification, the high-molecular-weight fraction formed a much greater percentage of the total protein in myelin isolated from degenerated optic nerves. After 2–3‘cycles’of purification, the distribution of protein in myelin isolated from degenerated and normal optic nerves was similar, an observation suggesting that the high-molecular-weight fraction in‘1-cycle myelin’from degenerated optic nerves may have been partly attributable to contamination. With the possible exception of ethanolamineglycerophosphatides, our data suggest that there was no preferential breakdown of myelin lipid constituents nor of protein constituents during Wallerian degeneration of rat optic nerve. As assessed by SDS-gel electrophoresis of the water-insoluble particulate fraction, the percentage of myelin protein was markedly decreased after 76 days of degeneration. However, the major myelin protein constituents in this fraction (the two basic proteins and proteolipid protein) appeared to decrease in the same relative proportions.  相似文献   

2.
The chronological order of changes in rat peripheral nerve proteins during Wallerian degeneration has been investigated by microdensitometric and electrophoretic techniques. Both methods revealed an early loss of myelin proteins. The histochemical microdensitometric study showed a very substantial early loss of stainable protein basic groups and a somewhat slower progressive loss of the major protein component of peripheral nerve myelin (the J band). The electrophoretic study showed an early loss of both the J band protein and the slower-moving basic protein band. The histochemical study also suggested that some cerebroside may be lost in the early stage of Wallerian degeneration. It is concluded that degradation of myelin proteins is an initial event in the process of myelin breakdown.  相似文献   

3.
Lipid and basic protein interaction in myelin   总被引:4,自引:1,他引:3  
1. Purified myelin labelled with [(3)H]myo-inositol or [1-(14)C]acetate was incubated with trypsin or acetylated trypsin at 37 degrees C, pH8.0 for 30min. 2. After incubation and centrifugation analysis of the myelin pellet showed marked digestion of basic protein on polyacrylamide-gel electrophoresis. Proteolipid and Wolfgram proteins remained unchanged. 3. A loss of 15% of total protein and loss of all classes of lipids was also found. Most significant lipid losses were phosphoinositides, phosphatidylserine and sulphatide. 4. A low-density material containing more phospholipid than cholesterol and galactolipid was isolated from the supernatant obtained after centrifugation of trypsin-treated myelin. 5. Interaction of sulphatide and myelin basic protein was shown to take place in a biphasic system. Basic protein does not form any complex either with cerebroside or cholesterol in the same solvent system. 6. The release of acidic lipids from myelin suggests that they may be linked to basic protein by ionic forces and the neutral lipids may be by lipid-lipid interactions. 7. The relevance of these studies as a model of brain degeneration is discussed.  相似文献   

4.
We have applied a double tagging system in order to study whether purified myelin basic protein is able to adhere to normal human peripheral T lymphocytes without the need to purify cells. Evaluation of myelin basic protein adherence to peripheral blood mononuclear cells was determined with biotinylated myelin basic protein and fluoresceinated avidin, and lymphocyte population was identified by the corresponding phycoerythrinated monoclonal antibody. The observed adherence of myelin basic protein to T lymphocytes was found to depend on protein conformation.  相似文献   

5.
Synopsis Proteins are important constituents of the myelin sheath and serve to maintain its structural integrity. One of the protein components is susceptible to tryptic digestion and may be regarded as a particularly vulnerable part of the myelin sheath. The initial events in myelin breakdown may involve disruption of lipid-protein attachments followed later by chemical degradation of released lipids.In Wallerian degeneration the activity of proteolytic enzymes increases by 12 hr after nerve section. Proteolytic enzyme activity increases in the prodromal phase of diphtheritic neuropathy. Extracts of degenerating nerve cause proteolysis of normal myelin with loss of trypanophilic basic protein and lipid; selective loss of basic protein occurs very early in Wallerian degeneration and has also been found in and around plaques of multiple sclerosis. Proteolytic activity is increased at the edges of active multiple sclerosis lesions. It has been shown that the basic encephalitogenic protein is susceptible to digestion by neural proteases, yielding an active encephalitogenic fragment.It is inferred from these collective observations that proteases play an important role in early myelin breakdown and may also be implicated in the pathogenesis of multiple sclerosis plaques by digesting basic protein, by releasing lipid from its attachment to such protein, and by liberating an active encephalitogenic peptide. The factors responsible for the activation and release of proteases remain unknown.Research Associate supported by the Multiple Sclerosis Society.  相似文献   

6.
Bjartmar  Carl  Yin  Xinghua  Trapp  Bruce D. 《Brain Cell Biology》1999,28(4-5):383-395
Myelination provides extrinsic trophic signals that influence normal maturation and long-term survival of axons. The extent of axonal involvement in diseases affecting myelin or myelin forming cells has traditionally been underestimated. There are, however, many examples of axon damage as a consequence of dysmyelinating or demyelinating disorders. More than a century ago, Charcot described the pathology of multiple sclerosis (MS) in terms of demyelination and relative sparing of axons. Recent reports demonstrate a strong correlation between inflammatory demyelination in MS lesions and axonal transection, indicating axonal loss at disease onset. Disruption of axons is also observed in experimental allergic encephalomyelitis and in Theiler's murine encephalomyelitis virus disease, two animal models of inflammatory demyelinating CNS disease. A number of dysmyelinating mouse mutants with axonal pathology have provided insights regarding cellular and molecular mechanisms of axon degeneration. For example, the myelin-associated glycoprotein and proteolipid protein have been shown to be essential for mediating myelin-derived trophic signals to axons. Patients with the inherited peripheral neuropathy Charcot-Marie Tooth disease type 1 develop symptomatic progressive axonal loss due to abnormal Schwann cell expression of peripheral myelin protein 22. The data summarized in this review indicate that axonal damage is an integral part of myelin disease, and that loss of axons contributes to the irreversible functional impairment observed in affected individuals. Early neuroprotection should be considered as an additional therapeutic option for these patients.  相似文献   

7.
Summary Adult albino rats were subjected to unilateral surgical removal of the eyeball. After survival times of 7–140 days, the numerical response of the neuroglial cells, and the progressive disintegration of the myelin sheaths in the optic nerves, were studied qualitatively and quantitatively in electron-microscopic montages. The distribution density of microglia and astroglia in degenerating optic nerve increased to peaks after 35 and 56 days respectively, whereas, the oligodendroglia gradually decreased. During the early stage of degeneration, microglial cells appeared and invaded the sheath at the intraperiod line, peeling off the outer lamellae, which were then engulfed by phagocytosis. Within the microglia, myelin sheath fragments were surrounded by a membrane curled to form a myelin ring. In the intermediate stage of degeneration, the paired electrondense lines of the ring, made up of myelin basic protein, decomposed and formed a homogenous or heterogenous osmiophilic layered structure, the myelin body, which, in the final stages, disintegrated and transformed into globoid lipid droplets and needle shaped cholesterol crystals.  相似文献   

8.
The central nervous system of the shiverer mouse is known to be severely deficient in myelin. Animals heterozygous for this autosomal-recessive mutation were crossed, and the myelin proteins were examined in the brains and spinal cords of shiverers and unaffected littermates among the offspring. In the brains and spinal cords of nine of the 14 unaffected littermates examined, the quantities of the myelin basic and proteolipid proteins were lower than normal. Furthermore, in the brains of heterozygotes 33 to ~ 150 days old, the myelin basic and proteolipid proteins were reduced in amount, compared to wild-type controls; the myelin basic protein was also present in subnormal amounts in the spinal cords from heterozygous animals at the ages of 17 to 150 days. More severe reductions in the quantities of the myelin proteins were observed in central nervous system tissue from homozygous shiverer mice, and the quantity of the myelin proteolipid protein in the central nervous system of the shiverer mouse, expressed as a ratio to the control value at each age, underwent a developmental decline. In heterozygotes, as well as shiverers, the peripheral nerves were also deficient in the P1 and Pr proteins, which are the same as the basic proteins in rodent central nervous system myelin. The findings regarding heterozygotes suggest that the defective primary gene product in the shiverer mouse could be the myelin basic protein itself or a protein required for a rate-limiting step in the processing of the myelin basic protein.  相似文献   

9.
Myelin damage can lead to the loss of axonal conduction and paralysis in multiple sclerosis and spinal cord injury. Here, we show that acrolein, a lipid peroxidation product, can cause significant myelin damage in isolated guinea pig spinal cord segments. Acrolein-mediated myelin damage is particularly conspicuous in the paranodal region in both a calcium dependent (nodal lengthening) and a calcium-independent manner (paranodal myelin splitting). In addition, paranodal protein complexes can dissociate with acrolein incubation. Degraded myelin basic protein is also detected at the paranodal region. Acrolein-induced exposure and redistribution of paranodal potassium channels and the resulting axonal conduction failure can be partially reversed by 4-AP, a potassium channel blocker. From this data, it is clear that acrolein is capable of inflicting myelin damage as well as axonal degeneration, and may represent an important factor in the pathogenesis in multiple sclerosis and spinal cord injury.  相似文献   

10.
The recovery, electrophoretic composition and synthesis of the myelin, particulate protein and soluble protein subfractions of rat sciatic nerve were compared in normal, sham-operated, and degenerating rat sciatic nerve at one, three and five days after neurotomy. Both single and double isotope methods were used to measure changes in synthesis in vitro and double isotope methods were used in vivo. The wet weights of nerves undergoing Wallerian degeneration for 5 days increased by 40 percent compared to normal and sham-operated nerves. The recovery, specific radioactivity, and synthesis of the myelin was reduced. The effect on myelin protein synthesis was similar in vitro and in vivo. The myelin loss was relatively constant in amount (30–40 g) regardless of differences in nerve sizes of young and old rats, consequently the percentage of myelin loss was inversely proportional to nerve size.The recovery of particulate protein increased, its rate of synthesis remained unchanged, and accordingly the specific radioactivity was decreased. The recovery, specific radioactivity, and the rate of synthesis of the soluble protein fraction were all elevated. The protein composition of the three fractions, as analyzed qualitatively by polyacrylamide disc gel electrophoresis, remained essentially unchanged through five days of degeneration.With regard to comparisons of the single and double isotope methods, results shows that the latter are more ideally suited to measuring changes in synthesis during the non-steady state conditions that are characteristics of rapid degeneration.  相似文献   

11.
The simultaneous incorporation of [3H]fucose and [1-14C]leucine into normal rat sciatic nerve was examined using an in vitro incubation model. A linear rate of protein precursor uptake was found in purified myelin protein over 1/2–6 hr of incubation utilizing a supplemented medium containing amino acids. This model was then used to examine myelin protein synthesis in nerves undergoing degeneration at 1–4 days following a crush injury. Data showed a statistically significant decrease in the ratio of fucose to leucine at 2, 3, and 4 days of degeneration, which was the consequence of a significant increase in leucine uptake. These results, plus substantial protein recovery in axotomized nerves, are indicative of active synthesis of proteins that purify with myelin during early Wallerian degeneration.  相似文献   

12.
Abstract— Phosphotungstic acid haematoxylin, trypan blue and amidoblack techniques have been developed as anionic dye methods for staining myelin basic proteins. All methods displayed central and peripheral nervous system myelin in histochemical prepa rations and stained brain basic proteins in electrophoretic polyacrylamide gels: phosphotungstic acid haematoxylin appeared to be the most selective of these techniques. Electron photomicrographs of peripheral nerve stained by phosphotungstic acid haematoxylin showed that the major part of myelin basic protein is located in the period dense line. The basic proteins stained by phosphotungstic acid haematoxylin showed an early loss in rat sciatic nerve undergoing Wallerian degeneration and had completely disappeared from the centre of 20 plaques of multiple sclerosis.  相似文献   

13.
To localize basic protein (BP) in the lamellar structure of central and peripheral myelin, we perfused newborn and 7-11-day rat pups with a phosphate-buffered fixative that contained 4% paraformaldehyde and 0.05 or 0.2% glutaraldehyde. Teased, longitudinally split or "brush" preparations of optic and trigeminal nerves were made by gently teasing apart groups of myelinated fibers with fine forceps or needles. Some of these preparations were immunostained without pretreatment in phosphate-buffered antiserum to BP according to the peroxidase-antiperoxidase method. Others were pretreated in ethanol before immunostaining. Then, all of them were dehydrated, embedded in Epon, and sectioned for electron microscopic study. In optic and trigeminal nerves that were not pretreated, myelin, glial cells, and their organelles were well preserved. BP immunostaining was present on cytoplasmic faces of oligodendroglial and Schwann cell membranes that formed mesaxons and loose myelin spirals. In compact central and peripheral myelin, reaction product was located in major dense line regions, and the myelin periodicity was the same as that observed in unstained control myelin that had been treated with preimmune serum. In ethanol-pretreated tissue, the myelin periodicity was reduced but dense line staining still was present. Our immunocytochemical demonstration of dense line localization of BP in both CNS and PNS myelin that was not disrupted or pretreated with solvents is important because of conflicting evidence in earlier immunostaining studies. Our results also support biochemical and histochemical evidence suggesting that BP exists in vivo as a membrane protein interacting with lipids on the cytoplasmic side of the bilayer in the spirally wrapped compact myelin membrane.  相似文献   

14.
Phosphoprotein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) activity for myelin basic protein was found to be present in the myelin fraction of rat brain. The enzyme activity was in a latent form and solubilized by 0.2% Triton X-100 treatment with about 50% increase of activity. The cytosol fraction from bovine brain also had phosphoprotein phosphatase activity for myelin basic protein, which was resolved into at least two peaks of activity on DEAE-cellulose column chromatography. Myelin basic protein was the best substrate for both the solubilized myelin fraction and the cytosol enzymes among the substrate proteins tested. The Km values of the solubilized myelin fraction were 4.2 muM for myelin basic protein, 7.4 muM for arginine-rich histone, 8.0 muM for histone mixture and 14.3 muM for protamine, respectively.  相似文献   

15.
Rabbits were injected into the sciatic nerves with either 35S-methionine, or 3H-fucose. After times ranging from 45 min to 15 days the nerves were removed and the total particulate material from the nerves fractionated to give seven subfractions with densities between 0.2 and 1.2 M sucrose. The patterns of radio-labelled proteins were examined by SDS-PAGE and quantitative fluorography. The results showed that the P2 basic protein was metabolically far more active than either the major P0 glycoprotein, or the basic protein BP. The P2 protein also entered the myelin fractions more rapidly than either P0, or BP components. The net synthesis of P0 was slower than P2 and BP and this intrinsic membrane protein remained associated with the denser membrane fractions (>0.7 M sucrose) for longer than the basic proteins prior to entering myelin. Newly synthesized high molecular weight proteins remained concentrated in the denser membrane fractions and turned over faster than the myelin proteins.

A low density myelin fraction (B) was detected in which both the P2 protein and certain high molecular weight proteins became more rapidly labelled than in compact myelin. In this fraction the specific activity remained higher than that of compact myelin for up to five days after the injection of 35S-methionine into the nerve.

The results indicate that the major PNS myelin proteins are incorporated into and turn over in the various compartments of the Schwann cell plasma membrane—myelin continuum at very different rates.  相似文献   


16.
Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell–mediated myelin digestion possible have not been established. We report that Schwann cells degrade myelin after injury by a novel form of selective autophagy, myelinophagy. Autophagy was up-regulated by myelinating Schwann cells after nerve injury, myelin debris was present in autophagosomes, and pharmacological and genetic inhibition of autophagy impaired myelin clearance. Myelinophagy was positively regulated by the Schwann cell JNK/c-Jun pathway, a central regulator of the Schwann cell reprogramming induced by nerve injury. We also present evidence that myelinophagy is defective in the injured central nervous system. These results reveal an important role for inductive autophagy during Wallerian degeneration, and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease.  相似文献   

17.
Chronic inflammatory demyelinating polyneuropathy is a debilitating autoimmune disease characterized by peripheral nerve demyelination and dysfunction. How the autoimmune response is initiated, identity of provoking Ags, and pathogenic effector mechanisms are not well defined. The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting thymic expression of self-Ags and deletion of self-reactive T cells. In this study, we used mice with hypomorphic Aire function and two patients with Aire mutations to define how Aire deficiency results in spontaneous autoimmune peripheral neuropathy. Autoimmunity against peripheral nerves in both mice and humans targets myelin protein zero, an Ag for which expression is Aire-regulated in the thymus. Consistent with a defect in thymic tolerance, CD4(+) T cells are sufficient to transfer disease in mice and produce IFN-γ in infiltrated peripheral nerves. Our findings suggest that defective Aire-mediated central tolerance to myelin protein zero initiates an autoimmune Th1 effector response toward peripheral nerves.  相似文献   

18.
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups.  相似文献   

19.
Peripheral nerves from aged animals exhibit features of degeneration, including marked fiber loss, morphological irregularities in myelinated axons and notable reduction in the expression of myelin proteins. To investigate how protein homeostatic mechanisms change with age within the peripheral nervous system, we isolated Schwann cells from the sciatic nerves of young and old rats. The responsiveness of cells from aged nerves to stress stimuli is weakened, which in part may account for the observed age-associated alterations in glial and axonal proteins in vivo . Although calorie restriction is known to slow the aging process in the central nervous system, its influence on peripheral nerves has not been investigated in detail. To determine if dietary restriction is beneficial for peripheral nerve health and glial function, we studied sciatic nerves from rats of four distinct ages (8, 18, 29 and 38 months) kept on an ad libitum (AL) or a 40% calorie restricted diet. Age-associated reduction in the expression of the major myelin proteins and widening of the nodes of Ranvier are attenuated by the dietary intervention, which is paralleled with the maintenance of a differentiated Schwann cell phenotype. The improvements in nerve architecture with diet restriction, in part, are underlined by sustained expression of protein chaperones and markers of the autophagy–lysosomal pathway. Together, the in vitro and in vivo results suggest that there might be an age-limit by which dietary intervention needs to be initiated to elicit a beneficial response on peripheral nerve health.  相似文献   

20.
Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38-46 years (middle-aged group) and 6 adults aged 63-91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP(+) auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号