首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Assuming adequate technique, determinations of intracellular phenylalanine and tyrosine concentrations in lymphocytes are very reproducible. The concentrations found in this study (1981) in five homozygotes and five obligate heterozygotes for PKU and seven normals, are identical with the corresponding concentrations found in 1979 in 13 homo-and 19 obligate heterozygotes for PKU and 26 normals.The intracellular concentrations in six homo-and five heterozyogtes for hyper-Phe, as determined in the present study, are intermediate between the concentrations found in PKUs and normals in the present and the former study. As in PKUs, there is no difference between homo-and heterozygotes for hyper-Phe. The hypothesis of an intracellular threshold concentration for phenylalanine triggering the production of a toxic metabolite, could explain the severe brain damage observed in untreated PKU-homozygotes, the slight damage in well-treated PKU-homozygotes and in PKU-heterozygotes, and the absence of damage in hyper-Phe homozygotes (and heterozygotes). Also the difference in brain function between homozygotes for both conditions (PKU-treated), can be understood in spite of comparably elevated extracellular phenylalanine concentrations in young patients.  相似文献   

2.
Summary Intracellular concentrations of phenylalanine, tyrosine, -aminobutyric acid, and seven other aminoacids (glycine, alanine, valine, cystine, methionine, isoleucine, leucine) were measured in lymphocytes of 13 homozygotes and 19 heterozygotes for phenylketonuria and in lymphocytes of 26 normals. Intracellular concentrations for phenylalanine, tyrosine, and -aminobutyric acid were significantly higher in homo- and heterozygotes than in normals (P<0.001; P<0.01). For the other seven aminoacids there were no or only questionable differences. Between homo-and heterozygotes there was no difference in any of the aminoacids. The intracellular phenylalanine: tyrosine ratio was essentially the same in all three groups of individuals. There was no correlation between intracellular phenylalanine above or below 10nmol/106 cells and IQ in heterozygotes. The same is true for phenylalanine: tyrosine ratio greater or smaller than 1. In homozygotes there was no correlation between intracellular phenylalanine and age—to which DQ/IQ is correlated. There was no significant difference in intracellular phenylalanine between homozygotes with blood levels above and below 908 mol/l (15 mg/100 ml) at the time of blood sampling and no correlation between intra- and extracellular phenylalanine concentrations.Among the 26 normals there were only two with intracellular phenylalanine above 10 nmol/106 cells, both showing phenylalanine loading test curves suggestive of heterozygosity.The results are discussed and important functions of the cell wall are proposed. The formation of an abnormal unknown intracellular metabolite being the real noxious agent could explain the incomparably different degrees of brain dysfunction in individuals with equal though elevated intracellular phenylalanine concentrations, i.e., homozygotes and heterozygotes for PKU.  相似文献   

3.
The data from this study showed that the excretion of three major metabolites of phenylalanine in patients with PKU approach normal values at blood phenylalanine levels less than 5.0 mg/dl. The MANOVA showed statistically significant differences in phenyllactate excretion when blood phenylalanine was greater than 10.0 mg/dl. The PL and total metabolite excretion were significantly correlated to blood phenylalanine in multiple samples taken from two individual subjects. Using data obtained from single patient observations may serve as a means for individualizing the PKU diet to insure low levels of phenylalanine metabolites and thus insure optimal development for patients with PKU.  相似文献   

4.
Absence of a convenient, direct enzyme assay for detecting phenylketonuria (PKU) heterozygotes has resulted in continued effort to develop an accurate and reliable procedure to discriminate the heterozygous individual from the homozygous normal. Our study compares two statistical procedures that combine the semifasting plasma phenylalanine and tyrosine concentrations with the individuals' prior probability of being a heterozygous carrier in order to discriminate carriers from noncarriers. The results of this comparison indicate that the quadratic discriminant function is superior to the linear discriminant function as a method of carrier testing both in theory and in practice. An interactive computer system is described that facilitates the clinical utilization of the quadratic discriminant function.  相似文献   

5.
Summary There is a statistically significant difference in the IQ's of PKU and histidinemia parents. The difference is due entirely to the verbal part of the Hamburg-Wechsler test. There is no significant difference in performance. The heterozygous state of histidinemia does not seem to bear an intellectual (evolutionary) advantage, since the IQ's of histidinemia parents show the same distribution as a normal population. In early and mostly well-treated PKU patients, the same slight deficit in verbal IQ appears with increasing age (changing test methods). These patients, simultaneously tested at 4 years of age with the Bühler-Hetzer and Kramer tests, exhibit a statistically significant difference between the results in favor of the less verbal Bühler-Hetzer. Since heterozygots, for PKU never have elevated phenylalanine blood levels, and because tryosine deficiency as argued by others seems highly improbable, we believe that the PKU gene has a more direct action on (or in) at least certain ganglion cells, lowering the verbal IQ slightly, but significantly. This action is not reflected by phenylalanine increase in the extracellular space in heterozygots and is not abolished by dietary treatment in homozygous PKU patients. The major damage in PKU patients must be due to chronic phenylalanine poisoning, which deteriorates cells and/or functions on a much larger scale, because it can be easily prevented by decreasing the phenylalanine blood level with correct dietary treatment.  相似文献   

6.
Hyperphenylalaninemia (HPA) results from defective hydroxylation of phenylalanine in the liver, in most cases because of defective phenylalanine hydroxylase. HPA is highly variable, ranging from moderate elevation of plasma phenylalanine with no clinical consequences to a severe disease, classical phenylketonuria (PKU). Non-PKU HPA was found in excess of PKU in Israel, while the opposite is true in Europe. To study the genetic basis of non-PKU HPA, we performed haplotype analysis at the phenylalanine hydroxylase locus in 27 families with non-PKU HPA. All individuals with this condition were compound heterozygotes. In six of these families, in which both PKU and non-PKU HPA were segregating, haplotype analysis showed that non-PKU HPA resulted from compound heterozygosity for a PKU mutation and a second mutation, with milder effect, which is probably expressed only when it interacts with the severe mutation. The involvement of PKU mutations in non-PKU HPA was further demonstrated in Jewish Yemenite families with non-PKU HPA, in which the individuals with this condition were carriers of the single PKU allele which exists in this community. In addition, two previously known PKU point mutations (R261Q and R408W) were found in individuals with non-PKU HPA. These mutations are associated, in our population, with the same haplotypes as those with which it is associated in Europe. Based on the above-mentioned genetic model for non-PKU HPA, successful prenatal diagnosis of this condition was performed in one family.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The purpose of this study was to find out how genetic and biochemical limitations influence psycho-social performance and to partially test the validity of justification theory. The ability to convert phenylalanine to tyrosine was compared with intellectual and personality characteristics in PKU family members. Each of the tested persons was given an oral dose of phenylalanine, the Shipley-Hartford Intelligence Test, and the Minnesota Multiphasic Personality Inventory (MMPI). Only those persons with reading ability at the sixth grade level or higher were tested. Eighty-six persons were tested: fifteen PKUs, forty-three siblings, and twenty-eight parents. A comparison was made among parents, PKUs, and the siblings. Siblings with the higher 2/3's of P2/T ratios were contrasted with those with the lowest 1/3 of ratios on measures of intelligence and psychopathology. Statistical analyses of the data reflected a trend in support of the justification theory. PKUs had significantly lower intelligence than their sibs and parents. The PKUs' mean IQ was 95 (homozygotes born of heterozygotes), followed by the upper 2/3's sibling mean IQ of 105 (heterozygotes born of nonheterozygote mothers). The lower 1/3 siblings' mean IQ was 107 (nonheterozygotes born from heterozygote mothers), and finally, the parents' mean IQ was 109 (heterozygotes, among them 50% were born from nonheterozygote mothers). The latter three mean IQs are not significantly different from each other. The personality tests revealed a trend toward more abnormality in PKUs than in their heterozygote siblings. The lowest rate of abnormality occurred in the nonheterozygote sibling group; that rate was significantly lower than in all other groups. The parents had the highest absolute rate of personality abnormality, but statistically so compared to the low-ratio siblings.  相似文献   

8.
Improved approaches to the problem of heterozygote detection for phenylketonuria (PKU) were developed in this study. The discrimination was based on 85 obligate heterozygotes and 45 controls who were neither pregnant nor on birth control medication. The best separation between hetrozygotes and normals was achieved with a linear discriminant function involving the logarithms of the serum concentrations of phenylalanine, tyrosine, and tryptophan. The theoretical overlap area between the distributions of heterozygotes and controls based on the above function, was 3.75%. In the 19 obligate hetrozygotes and 13 controls who were either pregnant or on birth control medication, the best separation was achieved with a linear discriminant function involving the logarithms of the serum concentrations of phenylalanine and tyrosine. The theoretical overlap area was 8.23%. The genetic accuracy of the discriminant function was confirmed by testing the results with parental-child exclusions, segregation analysis, and the frequency of heterozygosity in nonrelated collateral spouses. Finally, there was evidence suggesting that the antihypertensive agent, aldomet, alters serum tyrosine and tryptophan levels.  相似文献   

9.
Phenylketonuria (PKU) is a disorder characterized by an interruption in the conversion of phenylalanine to tyrosine, a reaction catalyzed by phenylalanine hydroxylase (PAH). Animal models of PKU used in this study were induced by daily subcutaneous injections of pups with alpha-methylphenylalanine plus phenylalanine in utero and postnatally from day 4 to day 14. Dry blood and plasma were utilized to measure phenylalanine concentration in PKU rats. The results indicated that the concentration of phenylalanine is higher and more stable in plasma than dry blood. Precolumn derivatization of dried blood and plasma free amino acids were conducted with phenylisothiocyanate (PITC). The phenylthiocarbamyl (PTC) derivatives were separated on a reversed-phase C-18 column (15 cm x 4.6 mm). A gradient high-performance liquid chromatography method with two eluents, 0.1 M sodium acetate buffer and 100% acetonitrile was developed to facilitate the separation of nine amino acids within 11 min. Tyrosine and phenylalanine eluted the column at 5.4 and 9.4 min, respectively. This method provides a quick and reliable technique for neonatal screening.  相似文献   

10.
Mouse Models of Human Phenylketonuria   总被引:15,自引:0,他引:15       下载免费PDF全文
A. Shedlovsky  J. D. McDonald  D. Symula    W. F. Dove 《Genetics》1993,134(4):1205-1210
Phenylketonuria (PKU) results from a deficiency in phenylalanine hydroxylase, the enzyme catalyzing the conversion of phenylalanine (PHE) to tyrosine. Although this inborn error of metabolism was among the first in humans to be understood biochemically and genetically, little is known of the mechanism(s) involved in the pathology of PKU. We have combined mouse germline mutagenesis with screens for hyperphenylalaninemia to isolate three mutants deficient in phenylalanine hydroxylase (PAH) activity and cross-reactive protein. Two of these have reduced PAH mRNA and display characteristics of untreated human PKU patients. A low PHE diet partially reverses these abnormalities. Our success in using high frequency random germline point mutagenesis to obtain appropriate disease models illustrates how such mutagenesis can complement the emergent power of targeted mutagenesis in the mouse. The mutants now can be used as models in studying both maternal PKU and somatic gene therapy.  相似文献   

11.
The PKU locus in man is on chromosome 12   总被引:7,自引:3,他引:4       下载免费PDF全文
Classical phenylketonuria (PKU) is a typical example of inborn errors in metabolism and is characterized by a complete lack of the hepatic enzyme phenylalanine hydroxylase, which normally converts phenylalanine to tyrosine. The genetic disorder causes impairment of postnatal brain development, resulting in severe mental retardation in untreated children. The disease is transmitted as an autosomal recessive trait and has a collective prevalence of about one in 10,000 among Caucasians, so that 2% of the population are carriers of the PKU trait. We have recently reported the cloning of human phenylalanine hydroxylase cDNA and that the human chromosomal phenylalanine hydroxylase gene is encoded by a unique DNA sequence. Using the human phenylalanine hydroxylase cDNA clone to analyze a clonal human/mouse hybrid cell panel by Southern hybridization, the phenylalanine hydroxylase gene has been assigned to human chromosome 12. Since the hypothesis that classical PKU is caused by structural mutations in the phenylalanine hydroxylase gene itself rather than through some transregulatory mechanisms has recently been confirmed by gene mapping, the PKU locus in man is determined to be on chromosome 12.  相似文献   

12.
Phenylketonuria (PKU) is a metabolic disorder caused by impaired phenylalanine hydroxylase (PAH). This condition results in hyperphenylalaninemia and elevated levels of abnormal phenylalanine metabolites, among which is phenylacetic acid/phenylacetate (PA). In recent years, PA and its analogs were found to have anticancer activity against a variety of malignancies suggesting the possibility that PKU may offer protection against cancer through chronically elevated levels of PA. We tested this hypothesis in a genetic mouse model of PKU (PAHenu2) which has a biochemical profile that closely resembles that of human PKU. Plasma levels of phenylalanine in homozygous (HMZ) PAHenu2 mice were >12-fold those of heterozygous (HTZ) littermates while tyrosine levels were reduced. Phenylketones, including PA, were also markedly elevated to the range seen in the human disease. Mice were subjected to 7,12 dimethylbenz[a]anthracene (DMBA) carcinogenesis, a model which is sensitive to the anticancer effects of the PA derivative 4-chlorophenylacetate (4-CPA). Tumor induction by DMBA was not significantly different between the HTZ and HMZ mice, either in total tumor development or in the type of cancers that arose. HMZ mice were then treated with 4-CPA as positive controls for the anticancer effects of PA and to evaluate its possible effects on phenylalanine metabolism in PKU mice. 4-CPA had no effect on the plasma concentrations of phenylalanine, phenylketones, or tyrosine. Surprisingly, the HMZ mice treated with 4-CPA developed an unexplained neuromuscular syndrome which precluded its use in these animals as an anticancer agent. Together, these studies support the use of PAHenu2 mice as a model for studying human PKU. Chronically elevated levels of PA in the PAHenu2 mice were not protective against cancer.  相似文献   

13.
Phenylketonuria is an inherited disorder of metabolism of the amino acid phenylalanine caused by a deficit of the enzyme phenylalanine hydroxylase. It is treated with a low-protein diet containing a low content of phenylalanine to prevent mental affection of the patient. Because of the restricted intake of high-biologic-value protein, patients with phenylketonuria may have lower than normal serum concentrations of pre-albumin, selenium, zinc and iron. The objective of the present study was to assess the compliance of our phenylketonuric (PKU) and hyperphenylalaninemic (HPA) patients; to determine the concentration of serum pre-albumin, selenium, zinc and iron to discover the potential correlation between the amount of proteins in food and their metabolic control. We studied 174 patients of which 113 were children (age 1–18), 60 with PKU and 53 with HPA and 61 were adults (age 18–42), 51 with PKU and 10 with HPA. We did not prove a statistically significant difference in the concentration of serum pre-albumin, zinc and iron among the respective groups. We proved statistically significant difference in serum selenium concentrations of adult PKU and HPA patients (p?=?0.006; Mann–Whitney U test). These results suggest that controlled low-protein diet in phenylketonuria and hyperphenylalaninemia may cause serum selenium deficiency in adult patients.  相似文献   

14.
Sharman R  Sullivan K  Young RM  McGill J 《Gene》2012,504(2):288-291

Background

Previous research has suggested an increased risk for individuals with phenylketonuria (PKU) of developing depression and other mood disorders. As PKU can disrupt neurotransmitter synthesis via biochemical mechanisms, depressive symptoms are hypothesised to result from neurotransmitter dysregulation. Whilst adherence (or return) to the phenylalanine-restricted diet may resolve or improve symptoms of depression, data to demonstrate a direct relationship between biochemistry and mood in this population are lacking.

Methods

Thirteen adolescents with early and continuously treated PKU and eight sibling controls were compared in their total reported depressive symptoms. A general executive function assessment was also undertaken in the PKU group. Correlations between depressive symptoms and biochemical markers were examined within the PKU group only.

Results

Correlational analyses within the PKU group demonstrated strong and significant associations between depressive symptoms and long term exposure to either a high phenylalanine:tyrosine ratio, or low tyrosine. Increasing symptoms of depression were also found to be associated with poorer executive function in the PKU sample. However, both groups of adolescents scored within the normal range in symptoms of depression (p > 0.05).

Conclusions

Significant associations were observed between biochemical markers indicating poorer dietary control and increasing depressive symptoms in a sample of adolescents with early and continuously treated PKU, although symptoms of depression remained within the normal range. An association between depressive symptoms and poorer EF was also demonstrated. Further research is needed to establish whether the depressive symptoms observed in this young population represent an emerging (subclinical) risk for major depressive disorder as they age.  相似文献   

15.
Mosbah  H.  Donadille  B.  Vatier  C.  Janmaat  S.  Atlan  M.  Badens  C.  Barat  P.  B&#;liard  S.  Beltrand  J.  Ben Yaou  R.  Bismuth  E.  Boccara  F.  Cariou  B.  Chaouat  M.  Charriot  G.  Christin-Maitre  S.  De Kerdanet  M.  Delemer  B.  Disse  E.  Dubois  N.  Eymard  B.  F&#;ve  B.  Lascols  O.  Mathurin  P.  Nob&#;court  E.  Poujol-Robert  A.  Prevost  G.  Richard  P.  Sellam  J.  Tauveron  I.  Treboz  D.  Verg&#;s  B.  Vermot-Desroches  V.  Wahbi  K.  J&#;ru  I.  Vantyghem  M. C.  Vigouroux  C. 《Orphanet journal of rare diseases》2022,17(1):1-21

Phenylketonuria (PKU) is an inherited metabolic disease characterized by a defective conversion of phenylalanine (Phe) to tyrosine, potentially leading to Phe accumulation in the brain. Dietary restriction since birth has led to normal cognitive development. However, PKU patients can still develop cognitive or behavioral abnormalities and subtle neurological deficits. Despite the increasing evidence in the field, the assessment of neurocognitive, psychopathological, and neurological follow-up of PKU patients at different ages is still debated. The high interindividual variability in the cognitive outcome of PKU patients makes the specificity of the neurocognitive and behavioral assessment extremely challenging. In the present paper, a multidisciplinary panel of Italian PKU experts discussed different tools available for cognitive, psychopathological, and neurological assessment at different ages based on the existing literature and daily clinical practice. This study aims to provide evidence and a real-life-based framework for a specific clinical assessment of pediatric, adolescent, and adult patients affected by PKU.

  相似文献   

16.
Summary A deletion of a single base in codon 55 (exon 2) of the phenylalanine hydroxylase (PAH) gene has been identified by direct DNA sequencing of 94 phenyl-ketonuria (PKU) chromosomes. This mutation alters the reading frame so that a stop signal (TAA) is generated in codon 60 of the PAH gene. Haplotype analysis revealed that all PKU alleles showing the codon 55 frameshift mutation exhibited haplotype 1. In our panel of DNA probes 13% of all mutant haplotype 1 alleles carry this particular mutation. Patients who were compound heterozygotes for this deletion and R408W in exon 12, or the splice mutation in intron 12, were affected by severe PKU. Thus, the clinical data provide additional evidence that haplotype 1 PKU alleles carry molecular defects which confer a null phenotype. In addition, we were able to show that the newly detected mutation occurs on alleles of different ethnic background.  相似文献   

17.
Nonphenylketonuria hyperphenylalaninemia (non-PKU HPA) is defined as phenylalanine hydroxylase (PAH) deficiency with blood phenylalanine levels below 600 mumol/liter (i.e., within the therapeutic range) on a normal dietary intake. Haplotype analysis at the PAH locus was performed in 17 Danish families with non-PKU HPA, revealing compound heterozygosity in all individuals. By allele-specific oligonucleotide (ASO) probing for common PKU mutations we found 12 of 17 non-PKU HPA children with a PKU allele on one chromosome. To identify molecular lesions in the second allele, individual exons were amplified by polymerase chain reaction and screened for mutations by single-strand conformation polymorphism. Two new missense mutations were identified. Three children had inherited a G-to-A transition at codon 415 in exon 12 of the PAH gene, resulting in the substitution of asparagine for aspartate, whereas one child possessed an A-to-G transition at codon 306 in exon 9, causing the replacement of an isoleucine by a valine in the enzyme. It is further demonstrated that the identified mutations have less impact on the heterozygote's ability to hydroxylate phenylalanine to tyrosine compared to the parents carrying a PKU mutation. The combined effect on PAH activity explains the non-PKU HPA phenotype of the child. The present observations that PKU mutations in combination with other mutations result in the non-PKU HPA phenotype and that particular mutation-restriction fragment length polymorphism haplotype combinations are associated with this phenotype offer the possibility of distinguishing PKU patients from non-PKU individuals by means of molecular analysis of the hyperphenylalaninemic neonate and, consequently, of determining whether a newborn child requires dietary treatment.  相似文献   

18.
DNA haplotype analyses of patients with hyperphenylalaninemia.   总被引:1,自引:1,他引:0       下载免费PDF全文
Linkage analysis of phenylketonurics has shown a strong association between the DNA haplotype at the phenylalanine hydroxylase (PAH) locus and phenylketonuria (PKU). Similarly, a genetic linkage between less severe forms of hyperphenylalaninemia (HPA) and the PAH locus has been suggested. In the present study we analyzed this linkage in more detail. Haplotypes at the PAH locus were determined for 19 individuals with moderately elevated plasma phenylalanine and normal urinary neopterin/biopterin ratios. Fourteen of these individuals had plasma phenylalanine levels of 4-10 mg/dl (mild HPA), and the other five had plasma phenylalanine levels of 10-19 mg/dl (atypical PKU). Thirteen of the 15 HPA families consisted of an affected child and at least one other sibling. Elevated plasma phenylalanine was seen to genetically segregate with specific PAH alleles in each family. Summation of the LOD scores for both categories of moderate plasma phenylalanine elevation gave a maximum value of 3.556 at theta = 0. At theta = 0 this gives a probability of linkage between the PAH locus and the locus for moderate phenylalanine elevations that is approximately 3,600:1. None of the alleles segregating with either mild HPA or atypical PKU were of haplotype 2 or 3, and 13/20 were of types 1 or 4. This is in agreement with the most deleterious mutations being on haplotypes 2 and 3 and with the less severe mutations being on haplotypes 1 and 4. chi 2 Analyses indicated no statistically significant correlation between HPA and a particular haplotype or restriction-enzyme site.  相似文献   

19.
Continuing investigation of the system that hydroxylates phenylalanine to tyrosine has led to new insights into diseases associated with the malfunction of this system. Good evidence has confirmed that phenylketonuria (PKU) is not caused by a simple lack of phenylalanine hydroxylase. Dihydropteridine reductase deficiency as well as defects in biopterin metabolism may also cause the clinical features of phenylketonuria. Furthermore, these diseases do not respond to the standard treatment for phenylketonuria.  相似文献   

20.
DNA haplotype data from the phenylalanine hydroxylase (PAH) locus are available from a number of European populations as a result of RFLP testing for genetic counseling in families with phenylketonuria (PKU). We have analyzed data from Hungary and Czechoslovakia together with published data from five additional countries--Denmark, Switzerland, Scotland, Germany, and France--representing a broad geographic and ethnographic range. The data include 686 complete chromosomal haplotypes for eight RFLP sites assayed in 202 unrelated Caucasian families with PKU. Forty-six distinct RFLP haplotypes have been observed to date, 10 unique to PKU-bearing chromosomes, 12 unique to non-PKU chromosomes, and the remainder found in association with both types. Despite the large number of haplotypes observed (still much less than the theoretical maximum of 384), five haplotypes alone account for more than 76% of normal European chromosomes and four haplotypes alone account for more than 80% of PKU-bearing chromosomes. We evaluated the distribution of haplotypes and alleles within these populations and calculated pairwise disequilibrium values between RFLP sites and between these sites and a hypothetical PKU "locus." These are statistically significant differences between European populations in the frequencies of non-PKU chromosomal haplotypes (P = .025) and PKU chromosomal haplotypes (P much less than .001). Haplotype frequencies of the PKU and non-PKU chromosomes also differ significantly (P much less than .001. Disequilibrium values are consistent with the PAH physical map and support the molecular evidence for multiple, independent PKU mutations in Caucasians. However, the data do not support a single geographic origin for these mutations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号