首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA methylation at cytosine residues in CpG dinucleotides is a component of epigenetic marks crucial to mammalian development. In preimplantation stage embryos, a large part of genomic DNA is extensively demethylated, whereas the methylation patterns are faithfully maintained in certain regions. To date, no enzymes responsible for the maintenance of DNA methylation during preimplantation development have been identified except for the oocyte form of DNA (cytosine-5)-methyltransferase 1 (Dnmt1o) at the 8-cell stage. Herein, we demonstrate that the somatic form of Dnmt1 (Dnmt1s) is present in association with chromatin in MII-stage oocytes as well as in the nucleus throughout preimplantation development. At the early one-cell stage, Dnmt1s is asymmetrically localized in the maternal pronuclei. Thereafter, Dnmt1s is recruited to the paternal genome during pronuclear maturation. During the first two cell cycles after fertilization, Dnmt1s is exported from the nucleus in the G2 phase in a CRM1/exportin-dependent manner. Antibody microinjection and small interfering RNA-mediated knock-down decreases methylated CpG dinucleotides in repetitive intracisternal A-type particle (IAP) sequences and the imprinted gene H19. These results indicate that Dnmt1s is responsible for the maintenance methylation of particular genomic regions whose methylation patterns must be faithfully maintained during preimplantation development.  相似文献   

2.
High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.  相似文献   

3.
Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene   总被引:28,自引:0,他引:28  
Maintenance of genomic methylation patterns in mammalian somatic cells depends on DNA methyltransferase-1 (Dnmt1). Mouse oocytes and preimplantation embryos lack Dnmt1 but express a variant of this protein called Dnmt1o. We eliminated Dnmt1o by deletion of the oocyte-specific promoter and first exon from the Dnmt1 locus. Homozygous animals were normal, but most heterozygous fetuses of homozygous females died during the last third of gestation. Although genomic methylation patterns were established normally in Dnmt1o-deficient oocytes, embryos derived from such oocytes showed a loss of allele-specific expression and methylation at certain imprinted loci. Transient nuclear localization of Dnmt1o in 8-cell embryos suggests that this variant of Dnmt1 provides maintenance methyltransferase activity specifically at imprinted loci during the fourth embryonic S phase.  相似文献   

4.
J. F. Leslie  K. K. Klein 《Genetics》1996,144(2):557-567
The murine agouti locus regulates a switch in pigment synthesis between eumelanin (black/brown pigment) and phaeomelanin (yellow/red pigment) by hair bulb melanocytes. We recently described a spontaneous mutation, hypervariable yellow (A(hvy)) and demonstrated that A(hvy) is responsible for the largest range of phenotypes yet identified at the agouti locus, producing mice that are obese with yellow coats to mice that are of normal weight with black coats. Here, we show that agouti expression is altered both temporally and spatially in A(hvy) mutants. Agouti expression levels are positively correlated with the degree of yellow pigmentation in individual A(hvy) mice, consistent with results from other dominant yellow agouti mutations. Sequencing of 5' RACE and genomic PCR products revealed that A(hvy) resulted from the integration of an intracisternal A particle (IAP) in an antisense orientation within the 5' untranslated agouti exon 1C. This retrovirus-like element is responsible for deregulating agouti expression in A(hvy) mice; agouti expression is correlated with the methylation state of CpG residues in the IAP long terminal repeat as well as in host genomic DNA. In addition, the data suggest that the variable phenotype of A(hvy) offspring is influenced in part by the phenotype of their A(hvy) female parent.  相似文献   

5.
Yu Q  Thieu VT  Kaplan MH 《The EMBO journal》2007,26(8):2052-2060
Stat4 is required for Th1 development, although how a transiently activated factor generates heritable patterns of gene expression is still unclear. We examined the regulation of IL-18Ralpha expression to define a mechanism for Stat4-dependent genetic programming of a Th1-associated gene. Although Stat4 binds the Il18r1 promoter following IL-12 stimulation and transiently increases acetylated histones H3 and H4, patterns of histone acetylation alone in Th1 cells may not be sufficient to explain cell-type-specific patterns of gene expression. The level of DNA methylation and recruitment of Dnmt3a to Il18r1 inversely correlate with IL-18Ralpha expression, and blocking DNA methylation increases IL-18Ralpha expression. Moreover, there was decreased Il18r1-Dnmt3a association and DNA methylation following transient trichostatin A-induced histone hyperacetylation in Stat4-/-Th1 cultures. Increased association of Dnmt3a and the Dnmt3a cofactor Dnmt3L with the promoters of several Stat4-dependent genes was found in Stat4-/- Th1 cultures, providing a general mechanism for Stat4-dependent gene programming. These data support a mechanism wherein the transient hyperacetylation induced by Stat4 prevents the recruitment of DNA methyltransferases and the subsequent repression of the Il18r1 locus.  相似文献   

6.
The DNA methyltransferase-like protein Dnmt3L is necessary for the establishment of genomic imprints in oogenesis and for normal spermatogenesis (Bourc'his et al., 2001; Hata et al., 2002). Also, a paternally imprinted gene, H19, loses DNA methylation in Dnmt3L-/- spermatogonia (Bourc'his and Bestor, 2004; Kaneda et al., 2004). To determine the reason for the impaired spermatogenesis in the Dnmt3L-/- testes, we have carried out a series of histological and molecular studies. We show here that Dnmt3L-/- germ cells were arrested and died around the early meiotic stage. A microarray-based gene expression-profiling analysis revealed that various gonad-specific and/or sex-chromosome-linked genes were downregulated in the Dnmt3L-/- testes. In contrast, expression of retrovirus-like intracisternal A-particle (IAP) sequences was upregulated; consistent with this observation, a specific IAP copy showed complete loss of DNA methylation. These findings indicate that Dnmt3L regulates germ cell-specific gene expression and IAP suppression, which are critical for male germ cell proliferation and meiosis.  相似文献   

7.
Changes in genomic DNA methylation patterns are generally assumed to play an important role in the etiology of human cancers. The Dnmt3a enzyme is required for the establishment of normal methylation patterns, and mutations in Dnmt3a have been described in leukemias. Deletion of Dnmt3a in a K-ras–dependent mouse lung cancer model has been shown to promote tumor progression, which suggested that the enzyme might suppress tumor development by stabilizing DNA methylation patterns. We have used whole-genome bisulfite sequencing to comprehensively characterize the methylomes from Dnmt3a wildtype and Dnmt3a-deficient mouse lung tumors. Our results show that profound global methylation changes can occur in K-ras–induced lung cancer. Dnmt3a wild-type tumors were characterized by large hypomethylated domains that correspond to nuclear lamina-associated domains. In contrast, Dnmt3a-deficient tumors showed a uniformly hypomethylated genome. Further data analysis revealed that Dnmt3a is required for efficient maintenance methylation of active chromosome domains and that Dnmt3a-deficient tumors show moderate levels of gene deregulation in these domains. In summary, our results uncover conserved features of cancer methylomes and define the role of Dnmt3a in maintaining DNA methylation patterns in cancer.  相似文献   

8.
We used mouse embryonic stem (ES) cells with systematic gene knockouts for DNA methyltransferases to delineate the roles of DNA methyltransferase 1 (Dnmt1) and Dnmt3a and -3b in maintaining methylation patterns in the mouse genome. Dnmt1 alone was able to maintain methylation of most CpG-poor regions analyzed. In contrast, both Dnmt1 and Dnmt3a and/or Dnmt3b were required for methylation of a select class of sequences which included abundant murine LINE-1 promoters. We used a novel hemimethylation assay to show that even in wild-type cells these sequences contain high levels of hemimethylated DNA, suggestive of poor maintenance methylation. We showed that Dnmt3a and/or -3b could restore methylation of these sequences to pretreatment levels following transient exposure of cells to 5-aza-CdR, whereas Dnmt1 by itself could not. We conclude that ongoing de novo methylation by Dnmt3a and/or Dnmt3b compensates for inefficient maintenance methylation by Dnmt1 of these endogenous repetitive sequences. Our results reveal a previously unrecognized degree of cooperativity among mammalian DNA methyltransferases in ES cells.  相似文献   

9.
10.
The de novo DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns in mouse development. Dnmt3b is more highly expressed in early developmental stages than Dnmt3a, and is thought to have an important role in the epigenetic gene regulation during early embryogenesis. Previous reports suggest that Dnmt3b is expressed preferentially in the embryonic lineage, but less in the extra-embryonic lineage, in early post-implantation embryos. However, it is unclear when this lineage-specific differential expression is established. Here we demonstrate that Dnmt3b shows a dynamic expression change during pre- and early post-implantation development. Contrary to the expectation, Dnmt3b is preferentially expressed in the trophectoderm rather than the inner cell mass at the mid blastocyst stage. Subsequently, the spatial Dnmt3b expression gradually changes during pre- and early post-implantation development, and finally Dnmt3b expression is settled in the embryonic lineage at the epiblast stage. The findings are consistent with the role for Dnmt3b in cell-lineage specification and the creation of lineage-specific DNA methylation patterns.  相似文献   

11.
M Okano  D W Bell  D A Haber  E Li 《Cell》1999,99(3):247-257
The establishment of DNA methylation patterns requires de novo methylation that occurs predominantly during early development and gametogenesis in mice. Here we demonstrate that two recently identified DNA methyltransferases, Dnmt3a and Dnmt3b, are essential for de novo methylation and for mouse development. Inactivation of both genes by gene targeting blocks de novo methylation in ES cells and early embryos, but it has no effect on maintenance of imprinted methylation patterns. Dnmt3a and Dnmt3b also exhibit nonoverlapping functions in development, with Dnmt3b specifically required for methylation of centromeric minor satellite repeats. Mutations of human DNMT3B are found in ICF syndrome, a developmental defect characterized by hypomethylation of pericentromeric repeats. Our results indicate that both Dnmt3a and Dnmt3b function as de novo methyltransferases that play important roles in normal development and disease.  相似文献   

12.
13.
During gestation there is a high demand for the essential nutrient choline. Adult rats supplemented with choline during embryonic days (E) 11-17 have improved memory performance and do not exhibit age-related memory decline, whereas prenatally choline-deficient animals have memory deficits. Choline, via betaine, provides methyl groups for the production of S-adenosylmethionine, a substrate of DNA methyltransferases (DNMTs). We describe an apparently adaptive epigenomic response to varied gestational choline supply in rat fetal liver and brain. S-Adenosylmethionine levels increased in both organs of E17 fetuses whose mothers consumed a choline-supplemented diet. Surprisingly, global DNA methylation increased in choline-deficient animals, and this was accompanied by overexpression of Dnmt1 mRNA. Previous studies showed that the prenatal choline supply affects the expression of multiple genes, including insulin-like growth factor 2 (Igf2), whose expression is regulated in a DNA methylation-dependent manner. The differentially methylated region 2 of Igf2 was hypermethylated in the liver of E17 choline-deficient fetuses, and this as well as Igf2 mRNA levels correlated with the expression of Dnmt1 and with hypomethylation of a regulatory CpG within the Dnmt1 locus. Moreover, mRNA expression of brain and liver Dnmt3a and methyl CpG-binding domain 2 (Mbd2) protein as well as cerebral Dnmt3l was inversely correlated to the intake of choline. Thus, choline deficiency modulates fetal DNA methylation machinery in a complex fashion that includes hypomethylation of the regulatory CpGs within the Dnmt1 gene, leading to its overexpression and the resultant increased global and gene-specific (e.g. Igf2) DNA methylation. These epigenomic responses to gestational choline supply may initiate the long term developmental changes observed in rats exposed to varied choline intake in utero.  相似文献   

14.
15.
16.
The DNA methylation pattern is reprogrammed in embryonic germ cells. In female germ cells, the short-form DNA methyltransferase Dnmt1, which is an alternative isoform specifically expressed in growing oocytes, plays a crucial role in maintaining imprinted genes. To evaluate the contribution of Dnmt1 to the DNA methylation in male germ cells, the expression profiles of Dnmt1 in embryonic gonocytes were investigated. We detected a significant expression of Dnmt1 in primordial germ cells in 12.5-14.5 day postcoitum (dpc) embryos. The expression of Dnmt1 was downregulated after 14.5 dpc after which almost no Dnmt1 was detected in gonocytes prepared from 18.5 dpc embryos. The short-form Dnmt1 also was not detected in the 16.5-18.5 dpc gonocytes. On the other hand, Dnmt1 was constantly detected in Sertoli cells at 12.5-18.5 dpc. The expression profiles of Dnmt1 were similar to that of proliferating cell nuclear antigen (PCNA), a marker for proliferating cells, suggesting that Dnmt1 was specifically expressed in the proliferating male germ cells. Inversely, genome-wide DNA methylation occurred after germ cell proliferation was arrested, when the Dnmt1 expression was downregulated. The present results indicate that not Dnmt1 but some other type of DNA methyltransferase contributes to the creation of DNA methylation patterns in male germ cells.  相似文献   

17.
18.
We analyzed DNA methyltransferase (Dnmt) protein expression and DNA methylation patterns during four progressive stages of prostate cancer in the transgenic adenocarcinoma of mouse prostate (TRAMP) model, including prostatic intraepithelial neoplasia, well-differentiated tumors, early poorly differentiated tumors, and late poorly differentiated tumors. Dnmt1, Dnmt3a, and Dnmt3b protein expression were increased in all stages; however, after normalization to cyclin A to account for cell cycle regulation, Dnmt proteins remained overexpressed in prostatic intraepithelial neoplasia and well-differentiated tumors, but not in poorly differentiated tumors. Restriction landmark genomic scanning analysis of locus-specific methylation revealed a high incidence of hypermethylation only in poorly differentiated (early and late) tumors. Several genes identified by restriction landmark genomic scanning showed hypermethylation of downstream regions correlating with mRNA overexpression, including p16INK4a, p19ARF, and Cacna1a. Parallel gene expression and DNA methylation analyses suggests that gene overexpression precedes downstream hypermethylation during prostate tumor progression. In contrast to gene hypermethylation, genomic DNA hypomethylation, including hypomethylation of repetitive elements and loss of genomic 5-methyldeoxycytidine, occurred in both early and late stages of prostate cancer. DNA hypermethylation and DNA hypomethylation did not correlate in TRAMP, and Dnmt protein expression did not correlate with either variable, with the exception of a borderline significant association between Dnmt1 expression and DNA hypermethylation. In summary, our data reveal the relative timing of and relationship between key alterations of the DNA methylation pathway occurring during prostate tumor progression in an in vivo model system.  相似文献   

19.
DNA methylation is a major epigenetic modification that regulates gene expression. Dnmt1, the maintenance DNA methylation enzyme, is abundantly expressed in the adult brain and is mainly located in the nuclear compartment, where it has access to chromatin. Hypomethylation of CpG islands at intron 1 of the SNCA gene has recently been reported to result in overexpression of α-synuclein in Parkinson disease (PD) and related disorders. We therefore investigated the mechanisms underlying altered DNA methylation in PD and dementia with Lewy bodies (DLB). We present evidence of reduction of nuclear Dnmt1 levels in human postmortem brain samples from PD and DLB patients as well as in the brains of α-synuclein transgenic mice models. Furthermore, sequestration of Dnmt1 in the cytoplasm results in global DNA hypomethylation in human and mouse brains, involving CpG islands upstream of SNCA, SEPW1, and PRKAR2A genes. We report that association of Dnmt1 and α-synuclein might mediate aberrant subcellular localization of Dnmt1. Nuclear Dnmt1 levels were partially rescued by overexpression of Dnmt1 in neuronal cell cultures and in α-synuclein transgenic mice brains. Our results underscore a novel mechanism for epigenetic dysregulation in Lewy body diseases, which might underlie the decrease in DNA methylation reported for PD and DLB.  相似文献   

20.
DNA methylation plays an important role in gene silencing in mammals. Two de novo methyltransferases, Dnmt3a and Dnmt3b, are required for the establishment of genomic methylation patterns in development. However, little is known about their coordinate function in the silencing of genes critical for embryonic development and how their activity is regulated. Here we show that Dnmt3a and Dnmt3b are the major components of a native complex purified from embryonic stem cells. The two enzymes directly interact and mutually stimulate each other both in vitro and in vivo. The stimulatory effect is independent of the catalytic activity of the enzyme. In differentiating embryonic carcinoma or embryonic stem cells and mouse postimplantation embryos, they function synergistically to methylate the promoters of the Oct4 and Nanog genes. Inadequate methylation caused by ablating Dnmt3a and Dnmt3b is associated with dysregulated expression of Oct4 and Nanog during the differentiation of pluripotent cells and mouse embryonic development. These results suggest that Dnmt3a and Dnmt3b form a complex through direct contact in living cells and cooperate in the methylation of the promoters of Oct4 and Nanog during cell differentiation. The physical and functional interaction between Dnmt3a and Dnmt3b represents a novel regulatory mechanism to ensure the proper establishment of genomic methylation patterns for gene silencing in development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号