首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large percentage of the repetitive elements in mammalian genomes are retroelements, which have been moved primarily by LINE-1 retrotransposons and endogenous retroviruses. Although LINE-1 elements have remained active throughout the mammalian radiation, specific groups of endogenous retroviruses generally remain active for comparatively shorter periods of time. Identification of an unusual extinction of LINE-1 activity in a group of South American rodents has opened a window for examination of the interplay in mammalian genomes between these ubiquitous retroelements. In the course of a search for any type of repetitive sequences whose copy numbers have substantially changed in Oryzomys palustris, a species that has lost LINE-1 activity, versus Sigmodon hispidus, a closely related species retaining LINE-1 activity, we have identified an endogenous retrovirus family differentially amplified in these two species. Analysis of three full-length, recently transposed copies, called mysTR elements, revealed gag, pro, and pol coding regions containing stop codons which may have accumulated either before or after retrotransposition. Isolation of related sequences in S. hispidus and the LINE-1 active outgroup species, Peromyscus maniculatus, by PCR of a pro-pol region has allowed determination of copy numbers in each species. Unusually high copy numbers of approximately 10,000 in O. palustris versus 1,000 in S. hispidus and 4,500 in the more distantly related P. maniculatus leave open the question of whether there is a connection between endogenous retrovirus activity and LINE-1 inactivity. Nevertheless, these independent expansions of mysTR represent recent amplifications of this endogenous retrovirus family to unprecedented levels.  相似文献   

2.
3.
Ustyugova SV  Lebedev YB  Sverdlov ED 《Genetica》2006,128(1-3):261-272
LINE-1 (L1) retrotransposons comprise about 17% of the human genome and include a recently transposed set of Ta-L1 elements that are polymorphic in humans. Although it is widely believed that L1s play an essential role in shaping and functioning of mammalian genomes, the understanding of the impact of L1 insertions on gene expression is far from being comprehensive. Here we compared hnRNA contents for allele pairs of genes heterozygous for Ta-L1 insertions in their introns in human cell lines of various origin. We demonstrated that some Ta-L1 insertions correlated with decreased content of the corresponding hnRNAs. This effect was characteristic of only nearly full-sized L1s and seemed to be tissue specific.  相似文献   

4.
The inbred mouse strain, C57BL/6J, was derived from mice of the Mus musculus complex. C57BL/6J can be crossed in the laboratory with a closely related mouse species, M. spretus to produce fertile offspring; however there has been no previous evidence of gene flow between M. spretus and M. musculus in nature. Analysis of the repetitive sequence LINE-1, using both direct sequence analysis and genomic Southern blot hybridization to species-specific LINE-1 hybridization probes, demonstrates the presence of LINE-1 elements in C57BL/6J that were derived from the species M. spretus. These spretus-like LINE-1 elements in C57BL/6J reveal a cross to M. spretus somewhere in the history of C57BL/6J. It is unclear if the spretus-like LINE-1 elements are still embedded in flanking DNA derived from M. spretus or if they have transposed to new sites. The number of spretus-like elements detected suggests a maximum of 6.5% of the C57BL/6J genome may be derived from M. spretus.  相似文献   

5.
Studies done in prokaryotes and eukaryotes have indicated that DNA sequence divergence decreases the frequency of homologous recombination. To determine which step(s) of homologous recombination is sensitive to DNA sequence divergence in mammalian cells we have used an assay that does not rely on the recovery of functional products. The assay is based on the acquisition by homologous recombination of endogenous LINE-1 sequences by exogenous LINE-1 sequences. In parallel experiments, we introduced into mouse cells two gapped exogenous LINE-1 sequences, one from the mouse, L1Md-A2, and the other from the rat, L1Rn-3. Although L1Rn-3 is on average less than 85% homologous to the LINE-1 elements of the mouse, the frequency of homologous recombination with endogenous LINE-1 elements obtained with L1Rn-3 was the same as the one obtained with L1Md-A2 which is on average 95% homologous to the LINE-1 elements of the mouse. The endogenous LINE-1 sequences rescued by L1Rn-3 were 8-18% divergent from L1Rn-3 sequences, whereas those rescued by L1Md-A2 were 2-5% divergent from L1Md-A2 sequences. The gap which had been introduced into the exogenous LINE-1 sequences had been precisely repaired in 50% of the recombinants obtained with L1Md-A2. None of the L1Rn-3 recombinants showed precise gap repair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Transposable elements (TEs) account for nearly half (44 %) of the human genome. However, their overall activity has been steadily declining over the past 35–50 million years, so that <0.05 % of TEs are presumably still “alive” (potentially transposable) in human populations. All the active elements are retrotransposons, either autonomous (LINE-1 and possibly the endogenous retrovirus ERVK), or non-autonomous (Alu and SVA, whose transposition is dependent on the LINE-1 enzymatic machinery). Here we show that a lineage of the endogenous retrovirus ERVE was recently engaged in ectopic recombination events and may have at least one potentially fully functional representative, initially reported as a novel retrovirus isolated from blood cells of a Chinese patient with chronic myeloid leukemia, which bears signals of positive selection on its envelope region. Altogether, there is strong evidence that ERVE should be included in the short list of potentially active TEs, and we give clues on how to identify human specific insertions of this element that are likely to be segregating in some of our populations.  相似文献   

8.
9.
10.
11.
12.
The observation that LINE-1 transposable elements are enriched on the X in comparison to the autosomes led to the hypothesis that LINE-1s play a role in X chromosome inactivation. If this hypothesis is correct, loss of LINE-1 activity would be expected to result in species extinction or in an alternate pathway of dosage compensation. One such alternative pathway would be to evolve a karyotype that does not require dosage compensation between the sexes. Two of the three extant species of the Ryukyu spiny rat Tokudaia have such a karyotype; both males and females are XO. We asked whether this karyotype arose due to loss of LINE-1 activity and thus the loss of a putative component in the X inactivation pathway. Although XO Tokudaia has no need for dosage compensation, LINE-1s have been recently active in Tokudaia osimensis and show higher density on the lone X than on the autosomes.  相似文献   

13.
14.
The DNA sequence of the 5.7 kb plasmid pHH9 containing the replicon region of the 150 kb plasmid pHH1 from Halobacterium salinarium was determined. The minimal region necessary for stable plasmid maintenance lies within a 2.9 kb fragment, as defined by transformation experiments. The DNA sequence contained two open reading frames arranged in opposite orientations, separated by an unusually high AT-rich (60–70% A + T) sequence of 350 bp. All H. salinarium strains (H. halobium, H. cutirubrum) investigated harbour endogenous plasmids containing the pHH1 replicon; however, these pHH1-type plasmids differ by insertions and deletions. Adjacent to the replicon, and separated by a copy of each of the insertion elements ISH27 and ISH26, is the 9 kb p-vac region required for gas vesicle synthesis. Analysis of these and other ISH element copies in pHH1 revealed that most of them lack the target DNA duplication usually found with recently transposed ISH elements. These results underline the plasticity of plasmid pHH1.  相似文献   

15.
The DNA sequence of the 5.7 kb plasmid pHH9 containing the replicon region of the 150 kb plasmid pHH1 from Halobacterium salinarium was determined. The minimal region necessary for stable plasmid maintenance lies within a 2.9 kb fragment, as defined by transformation experiments. The DNA sequence contained two open reading frames arranged in opposite orientations, separated by an unusually high AT-rich (60–70% A + T) sequence of 350 bp. All H. salinarium strains (H. halobium, H. cutirubrum) investigated harbour endogenous plasmids containing the pHH1 replicon; however, these pHH1-type plasmids differ by insertions and deletions. Adjacent to the replicon, and separated by a copy of each of the insertion elements ISH27 and ISH26, is the 9 kb p-vac region required for gas vesicle synthesis. Analysis of these and other ISH element copies in pHH1 revealed that most of them lack the target DNA duplication usually found with recently transposed ISH elements. These results underline the plasticity of plasmid pHH1.  相似文献   

16.
17.
18.
《Genomics》2021,113(6):3804-3810
Long interspersed nuclear elements (LINEs) are retrotransposons that contribute to genetic variation in the human genome. LINE-1 elements in larger-scale studies are challenging to identify using sequencing technologies due to cost and scalability. We developed an approach using optical mapping for detection of full-length LINE-1 insertions and 10× sequencing for confirmation. We found 51 true positive full-length LINE-1 insertions, of which 4 are novel insertions, in NA12878. Repeating our analysis on a larger sample set representing 26 populations, we identified 329 full-length LINE-1 elements, of which 123 are novel. 24.8% of these 329 LINE-1 insertions were shared amongst all 5 superpopulations (AFR, AMR, EUR, EAS, SAS). The African superpopulation has a higher percentage of population-specific LINE-1 insertions than any other superpopulation. These data indicate that our approach can provide high-speed, cost-effective, and increased accuracy for LINE-1 detection. These data also provide an insight into variations of LINE-1 elements between different populations.  相似文献   

19.
LINE-1 repetitive sequences contain a record of an evolving population of transposons within the mammalian genome. Of the 100,000 copies of LINE-1 sequences per genome there are many shared sequence variants representing changes occurring within the propagating LINE-1 elements themselves, rather than changes that occur during retrotransposition or after an element inserts in the genome. These shared sequence variants define families of LINE-1 elements which have spread within specific periods of time. We have been interested in studying events in LINE-1 evolution since the speciation of Mus spretus and Mus domesticus approximately 3 million years (Myr) ago. To do this, we have collected LINE-1 sequences that have shared sequence variants specific to M. spretus. The sampled LINE-1 elements were sequenced at their extreme 3' ends, where the density of sequence variants is highest. The new sequences define six new M. spretus-specific sequence variants. Of these, we have found one that could be used to screen for LINE-1 elements arising in the last 1 Myr, which we argue is a critical sample for understanding the dynamics of LINE-1 propagation.  相似文献   

20.
LINE-1 is a family of repetitive DNA sequences interspersed among mammalian genes. In the mouse haploid genome there are about 100,000 LINE-1 copies. We asked if the subspecies Mus spretus and Mus domesticus have developed species-specific LINE-1 subfamilies. Sequences from 14 M. spretus LINE-1 elements were obtained and compared to M. domesticus LINE-1 sequences. Using a molecular phylogenetic tree we identified several differences shared among a subset of young repeats in one or the other species as candidates for species-specific LINE-1 variants. Species specificity was tested using oligonucleotide probes complementary to each putative species-specific variant. When hybridized to genomic DNAs, single-variant probes detected an expanded number of elements in the expected mouse. In the other species these probes detected a smaller number of matches consistent with the average rate of random divergence among LINE-1 elements. It was further found that the combination of two species-specific sequence differences in the same probe reduced the detection background in the wrong species below our detection limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号