首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been assumed that following hepatic uptake, bilirubin is bound exclusively to cytosolic proteins prior to conjugation by microsomal UDP-glucuronyl-transferase. Since bilirubin partitions into lipid rather than the aqueous phase at neutral pH, we postulated that bilirubin reaches the sites of glucuronidation by rapid diffusion within membranes. To examine this hypothesis, [14C]bilirubin was incorporated into the membrane bilayer of small unilamellar liposomes of egg phosphatidylcholine. Radiochemical assay of this membrane-bound substrate in a physiologic concentration, using native rat liver microsomes, demonstrated immediate formation of bilirubin glucuronides at a more rapid initial velocity than for bilirubin bound to the high-affinity sites of purified cytosolic binding proteins, i.e. glutathione S-transferases (p less than 0.025) or native liver cytosol (p less than 0.05). Kinetic analysis suggested that the mechanisms of substrate transfer from liposomal membranes and from purified glutathione S-transferases to microsomal UDP-glucuronyltransferase were similar. The exchange of 3H- and 14C-labeled bilirubin substrate between binding proteins and liposomal membranes was then investigated using Sepharose 4B chromatography. As the concentration of bilirubin was increased relative to that of protein, net transfer of substrate from the protein to the membrane pool was observed. These findings indicate that bilirubin is efficiently transported by membrane-membrane transfer to hepatic microsomes, where it undergoes rapid conjugation. Bilirubin entering hepatocytes may partition between membrane and cytosolic protein pools, but as intracellular bilirubin concentration increases, the membrane pool is likely to provide a greater proportion of the substrate for glucuronidation.  相似文献   

2.
1. Reconstitution of purified bilirubin UDP-glucuronyltransferase from Wistar-rat liver into Gunn-rat liver microsomes provides a better environment than phosphatidylcholine liposomes, such that the final specific activity of the Wistar-rat liver enzyme was increased up to 85 units/mg of protein. 2. Gunn- and Wistar-rat liver microsomes were equally effective for reconstitution of the purified enzyme. 3. The transferase activity does not appear to be fully expressed in the more rigid environment of foetal Wistar-rat liver microsomes. 4. These reconstitution experiments reveal a final specific activity for the purified bilirubin UDP-glucuronyltransferase consistent with the capacity of the whole rat liver to glucuronidate bilirubin and indicate that the absence of this enzyme activity in Gunn-rat liver microsomes is not due to an abnormal microenvironment.  相似文献   

3.
1. Antiserum was raised against purified Wistar-rat liver UDP-glucuronyltransferase. 2. UDP-glucuronyltransferase activities towards 4-nitrophenol, bilirubin, 1-naphthol and morphine were co-immunoprecipitated from solubilized Wistar-rat liver preparations. 3. UDP-glucuronyltransferase activities towards 1-naphthol, 2-aminophenol and 4-nitrophenol were precipitated from solubilized Gunn-rat liver preparations by this antiserum. 4. UDP-glucuronyltransferase activities towards 1-naphthol, 4-nitrophenol and bilirubin, from Wistar-rat liver, were slightly inhibited by antiserum, whereas 1-naphthol UDP-glucuronyltransferase activity from Gunn-rat livers was greatly inhibited. 5. Measurable Wistar-rat liver glucuronyltransferase activities in washed immunoprecipitates indicate that the enzyme(s) were not merely inhibited by antiserum. 6. Immunoglobulin G purified from this antiserum immunoprecipitated transferase activities towards 4-nitrophenol, bilirubin and 1-naphthol. 7. The washed immunoprecipitates from both rat strains, containing UDP-glucuronyltransferase activity, appear to be similar when analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 8. Radial-immunodiffusion studies suggest that a smaller amount of UDP-glucuronyltransferase protein is present in Gunn-rat liver than in Wistar-rat liver. 9. The significance of these results in relation to the genetic deficiency in the Gunn rat is discussed.  相似文献   

4.
1. Conjugated bilirubin is conveniently determined by coupling with the diazonium salt of ethyl anthranilate. 2. This method has been used in the development of assays for UDP-glucuronyltransferase (EC 2.4.1.17), with bilirubin as substrate, in rat liver homogenates, microsomal preparations and partly purified fractions. 3. Chromatographic analysis suggests that bilirubin monoglucuronide is the product of the enzyme systems studied.  相似文献   

5.
1. Glucuronide formation of bilirubin and p-nitrophenol in vitro with excess of UDP-glucuronic acid by UDP-glucuronyltransferase from livers of young and adult rabbits was studied. 2. The development of UDP-glucuronyltransferase for the two substrates followed a markedly different pattern during maturation of young rabbits, p-nitrophenol-conjugation ability being much higher at birth than that for bilirubin. 3. Mg(2+) increased bilirubin conjugation, but inhibited p-nitrophenyl glucuronide formation. 4. p-Nitrophenol acted as a potent non-competitive inhibitor for bilirubin conjugation but bilirubin did not affect p-nitrophenyl glucuronidation. 5. The enzyme for bilirubin conjugation was inactivated at pH9 during treatment with snake venom, whereas in the same preparation the activity of the corresponding enzyme for p-nitrophenol was enhanced. In addition, some solubilization of the latter enzyme could be achieved by this method. 6. The possibility of the existence of more than one enzyme system for the formation of O-glucuronides is discussed.  相似文献   

6.
Highly purified bilirubin UDP-glucuronyltransferase from Wistar-rat liver, when reconstituted with Gunn-rat liver microsomes (microsomal fraction), was able to catalyse the conversion of unesterified bilirubin into both bilirubin monoglucuronide and diglucuronide. Under zero-order kinetic conditions for monoglucuronide formation, the fraction of bilirubin diglucuronide formed by incubation of bilirubin with the reconstituted highly purified transferase accounted for 18% of total bilirubin glucuronides, which was only slightly lower than the fraction of diglucuronides (23% of total bilirubin glucuronides) formed by incubation with hepatic microsomes in the presence of UDP-N-acetylglucosamine or Lubrol. The reconstituted purified enzyme also catalysed the UDP-glucuronic acid-dependent conversion of bilirubin monoglucuronide into diglucuronide and, when bilirubin was incubated with UDP-glucose or UDP-xylose, the formation of bilirubin glucosides and xylosides respectively. These results suggest that a single microsomal bilirubin UDP-glycosyltransferase may be responsible for the formation of bilirubin mono- and di-glycosides.  相似文献   

7.
A UDP-glucuronyltransferase isoform glucuronizes phenolic xenobiotics such as 4-nitrophenol, and an isoform glucuronizing 4-hydroxybiphenyl has also been found in rat liver. We purified a UDP-glucuronyltransferase isoform glucuronizing 4-hydroxybiphenyl from bovine liver microsomes by solubilization with 0.7% sodium cholate followed by three column chromatographic separations using DEAE-Toyopearl 650S, UDP-hexanolamine Sepharose 4B, and hydroxyapatite. The purified bovine liver 4-hydroxybiphenyl UDP-glucuronyltransferase (named Bovine 4HBGT) had glucuronidation activities toward 4-hydroxybiphenyl and 4-methylumbelliferone but had little activity toward 4-nitrophenol and 1-naphthol. The apparent molecular mass of Bovine 4HBGT was 54,000 Da on SDS-PAGE, and this was decreased to 50,000 Da by digestion with endo-beta-N-acetylglucosaminidase H. These data suggest that Bovine 4HBGT consists of a 50,000 Da polypeptide and a high mannose type oligosaccharide chain(s) of about 4,000 Da. The NH2-terminal sequence of GT-3 was GKVLVWPVDFSXWINI. These properties of Bovine 4HBGT were very similar to those of rat UDP-glucuronyltransferase glucuronizing xenobiotics. However, the NH2-terminal sequence of Bovine 4HBGT had higher homology with that of rat liver 4-hydroxybiphenyl UDP-glucuronyltransferase than with that of rat liver 4-nitrophenol UDP-glucuronyltransferase.  相似文献   

8.
P Vajro  M M Thaler  N Blanckaert 《Enzyme》1992,46(4-5):169-178
Conflicting data have been published regarding the effects of phenobarbital treatment on bilirubin UDP-glucuronyltransferase activity in native liver microsomes. Recent evidence suggests that the bilirubin UDP-glycosyltransferase system faces the interior of microsomal vesicles, and that expression of its activities in sealed microsomes may be rate-limited by transport of UDP sugars across the membrane. These observations raise the possibility that the reported variability in the effects of phenobarbital may reflect differences in integrity of the membrane in microsomal preparations. We examined the effect of phenobarbital on bilirubin UDP-glucosyltransferase and the UDP-glucuronyltransferase activities towards bilirubin, 4-nitrophenol, and 1-naphthol using native rat liver microsomes with verified vesicle integrity. Phenobarbital-induced microsomes in which the membrane permeability barrier was eliminated by pretreatment with detergent displayed markedly higher UDP-glycosyltransferase activities towards all tested substrates compared with activities in similarly disrupted microsomes from untreated rats. In contrast, none of the transferase activities tested were significantly enhanced by phenobarbital treatment when the enzymic activities were assayed in sealed microsomes. Addition to the enzyme assay mixture of UDPGlcNAc, a presumed physiological activator of the UDP-glucuronyltransferases, failed to expose the enhanced UDP-glucuronyltransferase concentration in phenobarbital-induced sealed microsomes. Our findings are consistent with the idea that transport of UDP sugar across the membrane may be rate-limiting for expression of UDP-glycosyltransferase activities in sealed microsomes. Quantitative assessment of membrane integrity is an essential prerequisite in experiments designed to study the regulation of the microsomal UDP-glycosyltransferase system.  相似文献   

9.
UDP-glucuronyltransferase activity of neonatal-chick liver or phenobarbital-treated chick-embryo liver catalysed the glucuronidation of 1-naphthol, 4-nitrophenol and 2-aminophenol. Only low transferase activity towards testosterone was detected, and activity towards bilirubin was not detectable. Liver microsomal transferase activity towards the three phenols was increased approx. 20-50-fold by phenobarbital treatment of chick embryos or by transfer of liver cells into tissue culture. A single form of UDP-glucuronyltransferase, which appears to catalyse the glucuronidation of these three phenols, was purified to near homogeneity from phenobarbital-treated chick-embryo liver microsomal fraction for the first time. The use of this purified enzyme as a standard protein facilitated the identification of this protein in chick-embryo liver microsomal fraction. Further, the accumulation of this microsomal protein was observed following phenobarbital treatment of chick embryos and during tissue culture of chick-embryo liver cells. The value of this model system for the study of the induction of UDP-glucuronyltransferase by drugs and hormones is discussed.  相似文献   

10.
1. A partially purified UDP-glucuronyltransferase was obtained by extracting rat liver microsomal preparations with Lubrol, a non-ionic detergent. 2. The soluble enzyme catalysed conjugation of both o-aminophenol and p-nitrophenol and was extremely stable when compared with untreated microsomal preparations. 3. The characteristics of the conjugation of the two phenols were found to differ with respect to pH optimum, bivalent cation requirement and Michaelis constants, suggesting that more than one enzyme is involved in the conjugation reaction.  相似文献   

11.
We have investigated the subcellular location and regulation of hepatic bilirubin UDP-glucuronyltransferase, which has been presumed to be located largely in the smooth endoplasmic reticulum. Purity of subcellular membrane fractions isolated from rat liver was assessed by electron microscopy and marker enzymes. Bilirubin UDP-glucuronyltransferase activity was measured by radiochemical assay using a physiologic concentration of [14C]bilirubin, and formation rates of bilirubin diglucuronide and monoglucuronides (C-8 and C-12 isomers) were determined. Activity of the enzyme was widely distributed in subcellular membranes, the majority being found in smooth and rough endoplasmic reticulum, with small amounts in nuclear envelope and Golgi membranes. No measurable activity was found in plasma membranes or in cytosol. Synthesis of bilirubin diglucuronide as a percentage of total conjugates and the ratio of C-8/C-12 bilirubin monoglucuronide isomers formed were comparable in all membranes, suggesting that the same enzyme is present in all locations. However, the regulation of bilirubin UDP-glucuronyltransferase activity differed among intracellular membranes; enzyme activity measured in the presence of the allosteric effector uridine 5'-diphospho-N-acetylglucosamine exhibited latency in smooth endoplasmic reticulum and Golgi membranes, but not in rough endoplasmic reticulum and nuclear envelope. Since rough membranes comprise 60% of hepatocyte endoplasmic reticulum and bilirubin UDP-glucuronyltransferase activity in vitro is maximal in this membrane fraction under presumed physiologic conditions, it is likely that the rough endoplasmic reticulum represents the major site of bilirubin glucuronidation in hepatocytes.  相似文献   

12.
1. The bilirubin UDP-glucuronyltransferase assay described by Van Roy & Heirwegh (1968) has been improved. 2. Extraction of final azo-derivatives is rendered more simple and efficient by thorough emulsification and by cooling. 3. Pretreatment of homogenates and cell fractions with digitonin increases the sensitivity of the assays and gives less variable results than those with untreated preparations. The activation procedure is flexible. 4. Blank values (obtained from incubation mixtures from which activating bivalent metal ion and UDP-glucuronic acid were omitted) are low. No endogenous conjugate formation could be detected except with untreated, fresh liver homogenates. Control incubation mixtures containing the latter preparations are preferably kept at 0 degrees C. 5. With activated microsomal preparations, rates of breakdown of UDP-glucuronic acid (as monitored by release of P(i)) were low. Little if any increase in enzyme activity was found when UDP-N-acetylglucosamine was included in the incubation mixtures. 6. Slight deviation from Michaelis-Menten kinetics with respect to bilirubin observed at low substrate concentrations is probably related to the use of binding protein in the assay mixtures. Michaelis-Menten kinetics were followed with respect to UDP-glucuronic acid. Part of the enzyme in microsomal preparations from rat liver functioned independently of added bivalent metal ions. Mn(2+) was slightly more, and Ca(2+) somewhat less, stimulatory than Mg(2+). The Mg(2+)-dependent fraction showed Michaelis-Menten kinetics with respect to the added Mg(2+). 7. The enzyme activities found were higher than values reported in the literature for untreated or purified preparations from rat liver. They were above reported values of the maximal biliary excretion rate of bilirubin.  相似文献   

13.
Bilirubin glucuronyltransferase. Specific assay and kinetic studies   总被引:5,自引:5,他引:0       下载免费PDF全文
1. Bilirubin glucuronide was synthesized in vitro in a system containing a rat liver microsomal fraction, UDP-glucuronic acid, Mg(2+) and bilirubin. The enzymic synthesis was accomplished without the addition of a bilirubin carrier. 2. Azobilirubin and azobilirubin glucuronide were separated by t.l.c. and paper chromatography and the measurement of the conjugate provided a specific assay for bilirubin UDP-glucuronyltransferase (EC 2.4.1.17). 3. This diazo compound was labelled when [U-(14)C]UDP-glucuronic acid was employed in the transglucuronidation reaction. 4. Identity of the glucuronide nature of the product was further confirmed by hydrolysis with beta-glucuronidase prepared from limpets and Helix pomatia. In each instance azobilirubin and glucuronic acid were liberated. 5. There was a close correlation between the bilirubin glucuronyl-transferase activity as measured by two procedures, colorimetric and radioisotopic. The specific activities so measured were 19nmol of bilirubin ;equivalents' conjugated/h per mg of protein and 16.9-18.4nmol of UDP-glucuronic acid incorporated/h per mg of protein, respectively. On this basis, it was concluded that the major product formed in vitro was bilirubin monoglucuronide; this represents about 77% of the total products formed. 6. The K(m) values for bilirubin and UDP-glucuronic acid at pH8.2 are 3.3x10(-4)m and 1.67x10(-3)m, respectively. 7. The addition of Mg(2+) at a final concentration of 5mm to the reaction mixture increased the rate of conjugation by 5.6-fold in the microsomal preparation that had been subjected to overnight dialysis against 10mm-EDTA (disodium salt). 8. Diethyl-nitrosamine at a final concentration of 1-20mm has no effect on the glucuronidation of bilirubin in vitro.  相似文献   

14.
We examined regulatory properties of bilirubin UDP-glucuronyltransferase in sealed RER (rough endoplasmic reticulum)- and SER (smooth endoplasmic reticulum)-enriched microsomes (microsomal fractions), as well as in nuclear envelope from rat liver. Purity of membrane fractions was verified by electron microscopy and marker studies. Intactness of RER and SER vesicles was ascertained by a high degree of latency of the lumenal marker mannose-6-phosphatase. No major differences in the stimulation of UDP-glucuronyltransferase by detergent or by the presumed physiological activator, UDPGlcNAc, were observed between total microsomes and RER- or SER-enriched microsomes. Isolated nuclear envelopes were present as a partially disrupted membrane system, with approx. 50% loss of mannose-6-phosphatase latency. The nuclear transferase had lost its latency to a similar extent, and the enzyme failed to respond to UDPGlcNAc. Our results underscore the necessity to include data on the integrity of the membrane permeability barrier when reporting regulatory properties of UDP-glucuronyltransferase in different membrane preparations.  相似文献   

15.
Glucuronidation reactions catalysed by rat liver microsomal UDP-glucuronyltransferase are differentially inducible by 3-methylcholanthrene and phenobarbital. To elucidate the molecular basis of this functional heterogeneity the enzyme was purified from livers of rats pretreated with the inducing agents. Using cholate solubilization, chromatography on Bio-Gel A-1.5m and on DEAE-cellulose in the presence of the nonionic detergent Brij 58, two enzyme forms could be separated. Both forms were subsequently purified to apparent homogeneity by affinity chromatography on UDP-hexanolamine Sepharose 4B, 3-Methylcholanthrene-inducible enzyme activity towards 1-naphthol, 4-nitrophenol, 3-hydroxybenzo(a)pyrene and N-hydroxy-2-naphthylamine copurified with one enzyme form (enzyme 1). In contrast phenobarbital-inducible enzyme activity towards morphine, chloramphenicol and 4-hydroxybiphenyl was associated with the other enzyme fraction (enzyme 2). Sodium dodecylsulfate/polyacrylamide gels showed similar molecular weights of 54000 for enzyme 1 and 56000 for enzyme 2. The results suggest the presence of at least two forms of UDP-glucuronyltransferase in rat liver. Factors affecting enzyme activity in purified and membrane-bound states are discussed.  相似文献   

16.
Hepatocyte intracellular membranes may facilitate the directed movement of bilirubin and other hydrophobic substrates to the active site of UDP-glucuronyltransferase in the endoplasmic reticulum. We postulated that the lipid composition and physical properties of membranes that transport substrate may modulate bilirubin glucuronidation. To examine this hypothesis, we incorporated [14C]bilirubin substrate into the membrane bilayer of small unilamellar liposomes composed of native phospholipid purified from rat hepatic microsomes. The initial velocity of bilirubin glucuronide formation in rat liver microsomes, measured by radiochemical assay, was considerably more rapid than for bilirubin in liposomes of egg phosphatidylcholine (p less than 0.001). Moreover, the ratio of bilirubin diglucuronide to monoglucuronides synthesized was markedly increased (p less than 0.01), approaching that observed in normal rat bile. Although the rates of bilirubin glucuronidation did not correlate with fluidity of the liposomal membrane core region, specific phospholipid head groups were associated with an increase, and cholesterol a decrease, in rates of glucuronidation. Movement of [3H]bilirubin from dual-labeled liposomes to microsomes occurred without concomitant [14C]phospholipid transfer. Thus, the lipid composition of membranes incorporating bilirubin appears to modulate the rate of glucuronidation and the relative rates of bilirubin mono- and diglucuronide formation. Phospholipid head groups on the surface of the bilayer, not the hydrocarbon core regions, may be implicated in the rapid process of membrane transport, which is likely to involve membrane-membrane collisions or diffusion of free substrate rather than membrane fusion.  相似文献   

17.
UDP-glucuronyltransferase was assayed in liver from adult rhesus monkeys and foetuses during late gestation. Activities toward 2-aminophenol, 5-hydroxytryptamine, 1-naphthol and 4-nitrophenol in the foetal liver ranged from 46 to 114% of adult values, whereas activities toward bilirubin, oestradiol and testosterone were less than 5% of adult values. This suggests that in primates UDP-glucuronyltransferase develops differentially in two clusters analogous to that in the rat.  相似文献   

18.
A form of UDP-glucuronyltransferase has been purified from liver microsomes of 3-methylcholanthrene-treated rats by a simple and rapid method involving chromatography on DEAE-Toyopearl and UDP-hexanolamine Sepharose columns. The purified preparation gave a single protein band (Mr 54,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the glucuronidation of not only phenolic xenobiotics such as 4-nitrophenol, 1-naphthol, and eugenol but also serotonin, which is an endogenous compound. Its activities toward 4-hydroxybiphenyl and testosterone were very low and no activity was detected toward bilirubin. After removal of the detergent (Emulgen 911), the transferase activity was stimulated by various phospholipids, about 10-fold activation being attained with phosphatidylcholine and lysophosphatidylcholine. On nitrocellulose sheets concanavalin A, but not wheat germ agglutinin, bound to the purified transferase, and this binding was abolished in the presence of alpha-methylmannoside and after treatment of the enzyme with endo-beta-N-acetylglucosaminidase H (Endo H). These observations provided evidence that the transferase is a glycoprotein carrying a "high mannose type" of oligosaccharide chain(s). The NH2-terminal 7 residues of the purified enzyme were determined to be Thr-Lys-Leu-Leu-Val-Trp-Pro.  相似文献   

19.
The activity of bilirubin UDP-glucuronyltransferase in liver tissue was increased 1.5-fold after 90 min of secretion administration (4 i.u./h per kg body wt.) in anaesthetized Wistar rats biopsied half-hourly over a period of 2 h. In unanaesthetized R/A Wistar rats, activities of liver enzymes were assayed after administration secretin for 1 h. Bilirubin UDP-glycosyltransferase activities and cytochrome P-450 concentration were increased, but p-nitrophenol UDP-glucuronyltransferase and UDP-glucose dehydrogenase activities remained unchanged.  相似文献   

20.
Formation of bilirubin monoglucuronide from unconjugated bilirubin requires a microsomal enzyme, UDP-glucuronate glucuronyltransferase (EC 2.4.1.17). Conversion of bilirubin monoglucuronide to bilirubin diglucuronide, the major bilirubin conjugate in bile, was studied in subcellular fractions of rat liver. The highest specific activity for bilirubin diglucuronide formation occurred in a fraction highly enriched in plasma membranes. Studies of reaction stoichiometry and utilization of UDP-D-[14C]glucuronic acid revealed that conversion of bilirubin monoglucuronide to bilirubin diglucuronide is not catalyzed by UDP-glucuronyltransferase, and results from transglucuronidation of bilirubin monoglucuronide, with formation of bilirubin diglucuronide and unconjugated bilirubin. When unconjugated bilirubin was infused intravenously into rats at rates exceeding the maximal hepatic excretory capacity, bilirubin monoglucuronide accumulated in serum and bilirubin diglucuronide was found exclusively in bile as the predominant bilirubin metabolite. These results suggest that formation of bilirubin diglucuronide occurs at the surface membrane of the liver cell. Conversion of bilirubin monoglucuronide to bilirubin diglucuronide may play a role in the transport of bilirubin glucuronides from liver to bile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号