首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genes for three novel snRNAs of Saccharomyces cerevisiae have been isolated, sequenced and tested for essentiality. The RNAs encoded by these genes are designated snR34, snR35 and snR36 respectively and contain 203, 204 and 182 nucleotides. Each RNA is derived from a single copy gene and all three RNAs are believed to be nucleolar, i.e. snoRNAs, based on extraction properties and association with fibrillarin. SnR34 and snR35 contain a trimethylguanosine cap, but this feature is absent from snR36. The novel RNAs lack elements conserved among several other snoRNAs, including box C, box D and long sequence complementarities with rRNA. Genetic disruption analyses showed each of the RNAs to be dispensable and a haploid strain lacking all three RNAs and a previously characterized fourth snoRNA (snR33) is also viable. No differences in the levels of precursors or mature rRNAs were apparent in the four gene knock-out strain. Possible roles for the new RNAs in ribosome biogenesis are discussed.  相似文献   

2.
3.
Trs130 is a specific component of the transport protein particle II complex, which functions as a guanine nucleotide exchange factor (GEF) for Rab GTPases Ypt31/32. Ypt31/32 is known to be involved in autophagy, although the precise mechanism has not been thoroughly studied. In this study, we investigated the potential involvement of Trs130 in autophagy and found that both the cytoplasm‐to‐vacuole targeting (Cvt) pathway and starvation‐induced autophagy were defective in a trs130ts (trs130 temperature‐sensitive) mutant. Mutant cells could not transport Atg8 and Atg9 to the pre‐autophagosomal structure/phagophore assembly site (PAS) properly, resulting in multiple Atg8 dots and Atg9 dots dispersed in the cytoplasm. Some dots were trapped in the trans‐Golgi. Genetic studies showed that the effect of the Trs130 mutation was downstream of Atg5 and upstream of Atg1, Atg13, Atg9 and Atg14 on the autophagic pathway. Furthermore, overexpression of Ypt31 or Ypt32, but not of Ypt1, rescued autophagy defects in trs130ts and trs65ts (Trs130‐HA Trs120‐myc trs65Δ) mutants. Our data provide mechanistic insight into how Trs130 participates in autophagy and suggest that vesicular trafficking regulated by GTPases/GEFs is important in the transport of autophagy proteins from the trans‐Golgi to the PAS.  相似文献   

4.
This review is a summary of our current knowledge of the structure, function and mechanism of action of the three zinc-containing alcohol dehydrogenases, YADH-1, YADH-2 and YADH-3, in baker's yeast, Saccharomyces cerevisiae. The opening section deals with the substrate specificity of the enzymes, covering the steady-state kinetic data for its most known substrates. In the following sections, the kinetic mechanism for this enzyme is reported, along with the values of all rate constants in the mechanism. The complete primary structures of the three isoenzymes of YADH are given, and the model of the 3D structure of the active site is presented. All known artificial mutations in the primary structure of the YADH are covered in full and described in detail. Further, the chemical mechanism of action for YADH is presented along with the complement of steady-state and ligand-binding data supporting this mechanism. Finally, the bio-organic chemistry of the hydride-transfer reactions catalyzed by the enzyme is covered: this chemistry explains the narrow substrate specificity and the enantioselectivity of the yeast enzyme.  相似文献   

5.
6.
The pre-mRNA splicing factor Prp31p was identified in a screen of temperature-sensitive yeast strains for those exhibiting a splicing defect upon shift to the non- permissive temperature. The wild-type PRP31 gene was cloned and shown to be essential for cell viability. The PRP31 gene is predicted to encode a 60 kDa polypeptide. No similarities with other known splicing factors or motifs indicative of protein-protein or RNA-protein interaction domains are discernible in the predicted amino acid sequence. A PRP31 allele bearing a triple repeat of the hemagglutinin epitope has been generated. The tagged protein is functional in vivo and a single polypeptide species of the predicted size was detected by Western analysis with proteins from yeast cell extracts. Functional Prp31p is required for the processing of pre-mRNA species both in vivo and in vitro, indicating that the protein is directly involved in the splicing pathway.  相似文献   

7.
Actin from Saccharomyces cerevisiae.   总被引:16,自引:1,他引:16       下载免费PDF全文
Inhibition of DNase I activity has been used as an assay to purify actin from Saccharomyces cerevisiae (yeast actin). The final fraction, obtained after a 300-fold purification, is approximately 97% pure as judged by sodium dodecyl sulfate-gel electrophoresis. Like rabbit skeletal muscle actin, yeast actin has a molecular weight of about 43,000, forms 7-nm-diameter filaments when polymerization is induced by KCl or Mg2+, and can be decorated with a proteolytic fragment of muscle myosin (heavy meromyosin). Although heavy meromyosin ATPase activity is stimulated by rabbit muscle and yeast actins to approximately the same Vmax (2 mmol of Pi per min per mumol of heavy meromyosin), half-maximal activation (Kapp) is obtained with 14 micro M muscle actin, but requires approximately 135 micro M yeast actin. This difference suggests a low affinity of yeast actin for muscle myosin. Yeast and muscle filamentous actin respond similarly to cytochalasin and phalloidin, although the drugs have no effect on S. cerevisiae cell growth.  相似文献   

8.
YGL196W of Saccharomyces cerevisiae encodes a putative protein that is unidentified but is predicted to have a motif similar to that of the N-terminal domain of the bacterial alanine racemase. In the present study we found that YGL196W encodes a novel D-serine dehydratase, which belongs to a different protein family from that of the known bacterial enzyme. The yeast D-serine dehydratase purified from recombinant Escherichia coli cells depends on pyridoxal 5'-phosphate and zinc, and catalyses the conversion of D-serine into pyruvate and ammonia with the K(m) and k(cat) values of 0.39 mM and 13.1 s(-1) respectively. D-Threonine and beta-Cl-D-alanine also serve as substrates with catalytic efficiencies which are approx. 3 and 2% of D-serine respectively. L-Serine, L-threonine and beta-Cl-L-alanine are inert as substrates. Atomic absorption analysis revealed that the enzyme contains one zinc atom per enzyme monomer. The enzyme activities toward D-serine and D-threonine were decreased by EDTA treatment and recovered by the addition of Zn2+. Little recovery was observed with Mg2+, Mn2+, Ca2+, Ni2+, Cu2+, K+ or Na+. In contrast, the activity towards beta-Cl-D-alanine was retained after EDTA treatment. These results suggest that zinc is involved in the elimination of the hydroxy group of D-serine and D-threonine. D-Serine dehydratase of S. cerevisiae is probably the first example of a eukaryotic D-serine dehydratase and that of a specifically zinc-dependent pyridoxal enzyme as well.  相似文献   

9.
We have cloned and sequenced the gene encoding a novel ubiquitin-conjugating enzyme in Saccharomyces cerevisiae. Disruption of this gene shows that it is not essential for cell viability.  相似文献   

10.
The GPX1, GPX2, and GPX3 genes of Saccharomyces cerevisiae have been reported previously to encode glutathione peroxidases (GPxs). We re-examined the sequence alignments of these proteins with GPxs from higher eukaryotes. Sequence identities, particularly with phospholipid hydroperoxide glutathione peroxidases (PHGPxs), were enhanced markedly by introduction to the yeast sequences of gaps that are characteristic of PHGPxs. PHGPx-like activity was detectable in extracts from wild-type S. cerevisiae and was diminished in extracts from gpx1 Delta, gpx2 Delta, and gpx3 Delta deletion mutants; PHGPx activity was almost absent in a gpx1 Delta/gpx2 Delta/gpx3 Delta triple mutant. Studies with cloned GPX1, GPX2, and GPX3 expressed heterologously in Escherichia coli confirmed that these genes encode proteins with PHGPx activity. An S. cerevisiae gpx1 Delta/gpx2 Delta/gpx3 Delta mutant was defective for growth in medium supplemented with the oxidation-sensitive polyunsaturated fatty acid linolenate (18:3). This sensitivity to 18:3 was more marked than sensitivity to H(2)O(2). Unlike H(2)O(2) toxicity, delayed toxicity of 18:3 toward gpx1 Delta/gpx2 Delta/gpx3 Delta cells was correlated with the gradual incorporation of 18:3 into S. cerevisiae membrane lipids and was suppressible with alpha-tocopherol, an inhibitor of lipid peroxidation. The results show that the GPX genes of S. cerevisiae, previously reported to encode GPxs, encode PHGPxs (PHGPx1, PHGPx2, and PHGPx3) and that these enzymes protect yeast against phospholipid hydroperoxides as well as nonphospholipid peroxides during oxidative stress. This is the first report of an organism that expresses PHGPx from more than one gene and produces PHGPx in the absence of a GPx.  相似文献   

11.
Apurinic endonucleases from Saccharomyces cerevisiae.   总被引:3,自引:2,他引:1       下载免费PDF全文
Three endonuclease activities have been partially purified from Saccharomyces cerevisiae on the basis of their activity against x-irradiated closed-circular supercoiled bacteriophage PM2 DNA. These endonucleases also nick apurinic DNA and two out of the three activities incise DNA UV-irradiated with high doses. The endonuclease activities have also been distinguished on the basis of their magnesium requirement and sensitivity to EDTA.  相似文献   

12.
An endonuclease cleaving depurinated and alkylated double-stranded DNA has been purified 500-fold from Saccharomyces cerevisiae, strain MB 1052. The enzyme has an Mr of 31 000 +/- 2000, a sedimentation value of 3.2S and a diffusion coefficient of 9.5 X 10-7 cm2/s. The enzyme was active only at apurinic/apyridiminic sites, regardless of whether they were produced by heating the DNA at acidic pH or by alkylation with the ultimate carcinogen methyl methanesulphonate. Native DNA was not acted upon. U.v.-irradiated DNA and DNA treated with the ultimate carcinogen N-acetoxy-2-acetylaminofluorene were cleaved to an extent related to the extent of apurinic/apyridiminic sites. Enzymic activity was not dependent upon Mg2+, but was stimulated approx. 3-fold by 4mM-Mg2+. The enzyme did not bind to DEAE-cellulose or CM-cellulose at KCl concentrations greater than 160 mM. The endonuclease was obtained free of exonuclease and 3-methyladenine-DNA glycosylase activity in five chromatographic steps.  相似文献   

13.
An NADP-dependent branched-chain alcohol dehydrogenase was purified from Saccharomyces cerevisiae var. uvarum grown under anaerobic conditions. Its quaternary structure is monomeric, and it has a molecular mass of 37 kDa and a pI of 5.9. A possible role of the enzyme in flavor production during alcoholic fermentation is discussed.  相似文献   

14.
The bcy1 mutation makes the cdc33 start mutant arrest at random points in the cell cycle instead of only at G1. We cloned and sequenced CDC33. This coding sequence is identical to that of the gene encoding the Saccharomyces cerevisiae 24-kilodalton mRNA cap-binding protein, eIF-4E.  相似文献   

15.
Two dimensional gel electrophoresis of ribosomal proteins from Saccharomycescerevisiae reveals the presence of three spots in the region corresponding to proteins of high acidic character. Washing the ribosomes with 0.4 M NH4Cl and 50% ethanol, followed by chromatography of the extracted proteins on DEAE-cellulose, indicated the presence of two fractions of acidic proteins; (A and Ax), having very similar molecular weights (12.000–13.000), but phosphorylated to different extents. Fractions A and Ax are immunologically distinct and their immunologic properties differ from acidic proteins found in Escherichiacoli, rat liver, and Artemiasalina ribosomes.Protein A can be resolved into two bands by electrofocusing, and two dimensional gel electrophoresis. The two components correspond to proteins L44 and L45 according to the standard nomenclature. Proteins Ax seems to correspond to the spot that moves above and to the left of L44 and L45 and is at least three times more phosphorylated than these two proteins.  相似文献   

16.
17.
Several wine isolates of Saccharomyces were analysed for six molecular markers, five nuclear and one mitochondrial, and new natural interspecific hybrids were identified. The molecular characterization of these Saccharomyces hybrids was performed based on the restriction analysis of five nuclear genes (CAT8, CYR1, GSY1, MET6 and OPY1, located in different chromosomes), the ribosomal region encompassing the 5.8S rRNA gene and the two internal transcribed spacers, and sequence analysis of the mitochondrial gene COX2. This method allowed us to identify and characterize new hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii, between S. cerevisiae and Saccharomyces bayanus, as well as a triple hybrid S. bayanusxS. cerevisiaexS. kudriavzevii. This is the first time that S. cerevisiaexS. kudriavzevii hybrids have been described which have been involved in wine fermentation.  相似文献   

18.
Ornithine carbamoyltransferase of Saccharomyces cerevisiae is subjected to an enzymatic regulation of its anabolic activity when it is bound to the inducible catabolic arginase as described earlier. This regulatory ornithine carbamoyltransferase essentially catalyzes the synthesis of citrulline, but the reverse reaction could be demonstrated using arsenate instead of phosphate. Steady-state initial velocity studies of the reverse reaction indicate that the mechanism is consistent with a rapid-equilibrium random model (in which all steps are in equilibrium, except that concerned with the interconversion of the central ternary complexes) involving the formation of enzyme - ornithine - arsenate and enzyme - citrulline - phosphate dead-end complexes. In the forward direction, although the mechanism also appears to be random, the results are in better agreement with a preferred ordered binding of substrates, with carbamoylphosphate adding first. This degenerate form of the random mechanism is discussed.  相似文献   

19.
Kaur J  Bachhawat AK 《Genetics》2007,176(2):877-890
Cysteine transport in the yeast Saccharomyces cerevisiae is mediated by at least eight different permeases, none of which are specific for cysteine. We describe a novel, high-affinity, (K(m) = 55 microM), cysteine-specific transporter encoded by the ORF YLL055w that was initially identified by a combined strategy of data mining, bioinformatics, and genetic analysis. Null mutants of YLL055w, but not of the other genes encoding for transporters that mediate cysteine uptake such as GAP1, GNP1, MUP1, or AGP1 in a met15Delta background, resulted in a growth defect when cysteine, at low concentrations, was provided as the sole sulfur source. Transport experiments further revealed that Yll055wp was the major contributor to cysteine transport under these conditions. The contributions of the other transporters became relevant only at higher concentrations of cysteine or when YLL055w was either deleted or repressed. YLL055w expression was repressed by organic sulfur sources and was mediated by the Met4p-dependent sulfur regulatory network. The results reveal that YLL055w encodes the principal cysteine transporter in S. cerevisiae, which we have named YCT1 (yeast cysteine transporter). Interestingly, Yct1p belongs to the Dal5p family of transporters rather than the amino acid permease family to which all the known amino acid transporters belong.  相似文献   

20.
Protease B has been isolated from Saccharomyces cerevisiae and purified in six steps as follows: autolysis of the yeast cells, ammonium sulfate fractionation, activation of the proteolytic enzymes, chromatography on DEAE-cellulose, chromatography on CM-cellulose and finally, a second chromatography on DEAE-cellulose. The preparation was shown to be homogeneous on polyacrylamide gels in the absence as well as in the presence of sodium dodecylsulfate. Furthermore, the molecular weight (43,000 daltons) and the isoelectric point (5.45) were in good agreement with earlier published values. The amino acid composition is reported. The absence of disulfide bonds in protease B has to be outlined. The amino acid residues of the protein have been found to be folded nearly quantitatively (at least 80%) in a beta-conformation as deduced from a circular dichroism study. Finally, the tryptophan residues (5 mol/mol protein) are largely buried in the hydrophobic core of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号