首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《The Journal of cell biology》1984,98(6):2011-2018
Polyadenylated RNA from Chlamydomonas was translated in a cell-free rabbit reticulocyte system that employed [35S]methionine. Antibodies made to four chloroplast ribosomal proteins synthesized in the cytoplasm and imported into the organelle were used for indirect immunoprecipitation of the labeled translation products, which were subsequently visualized on fluorographs of SDS gels. The cytoplasmically synthesized chloroplast ribosomal proteins were first seen as precursors with apparent molecular weights of 1,000 to 6,000 greater than their respective mature forms. Processing of the ribosomal protein precursors to mature proteins was affected by adding a postribosomal supernatant that had been extracted from cells of Chlamydomonas. In contrast to the chloroplast ribosomal proteins synthesized in the cytoplasm, two such proteins made within the chloroplast were found to be synthesized in mature form in cell-free wheat germ translation systems programmed with nonpolyadenylated RNA.  相似文献   

4.
本文采用低速匀浆、过筛的方法从植物叶中分离得到了完整、纯净的叶绿体。将叶绿体与提取缓冲液、苯酚混合匀浆抽提叶绿体 RNA。通过聚丙烯酰胺凝胶电泳与文献已发表的已知酵母5S RNA、菠菜叶绿体4.5S RNA 及小麦5S RNA、4.5S RNA 的电泳迁移距离进行比较,发现芹菜叶绿体中小分子 RNA(沉降系数为5S 左右的 RNA)中除含有5S RNA 和4S RNA 外,还含有两种4.5S RNA。而水杉和银杏叶绿体小分子 RNA 中只含有5S RNA 和4S RNA。  相似文献   

5.
The cellular content of chloroplast DNA in Euglena gracilis has been quantitatively determined. DNA was extracted from Euglena cells at various stages of chloroplast development and renatured in the presence of trace amounts of 3H-labeled chloroplast DNA. From the kinetics of renaturation of the 3H-labeled chloroplast DNA, compared with the kinetics of renaturation of excess nonradioactive chloroplast DNA, the fraction of cellular DNA represented by chloroplast DNA was calculated. The content of chloroplast DNA was found to increase from 4.9 to 14.6% of cellular DNA during light-induced chloroplast development. Correcting for the change in DNA mass per cell, the number of copies of chloroplast DNA is found to vary from 1400 to 2900 per cell. During this developmental transition, the cellular content of the chloroplast ribosomal RNA genes varies from 1900 to 5200 copies per cell. The ratio of the number of copies of rRNA genes to chloroplast genomes per cell remains in the range of 1-2 throughout chloroplast development, ruling out selective amplification of chloroplast rRNA genes as a means of regulation of rRNA gene expression. Direct measurement of the number of rRNA cistrons per 9.2 X 10(7) dalton genome yields a value of 1 or 2.  相似文献   

6.
J. Ingle 《Plant physiology》1968,43(11):1850-1854
Chloroplast RNA is synthesized in dark-grown radish cotyledons at about one-third the rate of that in the light. The synthesis, however, continues for longer in the dark and the percentage of chloroplast RNA can approach that in light-grown tissue. Light stimulates the synthesis and accumulation of both cytoplasmic and chloroplast RNA, but shows a 4-fold greater stimulation of the chloroplast RNA. Chloramphenicol, streptomycin and cycloheximide inhibit the synthesis of chloroplast RNA with little effect on cytoplasmic RNA. 5-Fluorouracil inhibits the synthesis of cytoplasmic more than chloroplast RNA. Synthesis of the 0.56 x 10(6) mol wt chloroplast RNA is inhibited much less than the other ribosomal RNA components by actinomycin D.  相似文献   

7.
Euglena gracilis Chloroplast DNA Codes for Polyadenylated RNA   总被引:1,自引:0,他引:1       下载免费PDF全文
Polyadenylated RNA, isolated from total cellular RNA of photoautotrophically grown Euglena gracilis, comprised 2.1% of the total cellular RNA and contained 6.2% polyadenylic acid. Polyadenylated RNA, labeled in vitro with 125I, hybridized at saturating levels to an average 7.7% of the chloroplast DNA. In the presence of excess chloroplast rRNA, hybridization of polyadenylated RNA was reduced, but was still observed at a level corresponding to 2.8% of the chloroplast DNA. Polyadenylic acid was not detected in mRNA prepared from chloroplast polyribosomes, indicating a level of less than 0.1% polyadenylic acid in mature chloroplast mRNA. Of the total RNA isolated from cytoplasmic polyribosomes, 2.0% contained polyadenylic acid. This latter polyadenylated RNA did not hybridize to chloroplast DNA.  相似文献   

8.
9.
A species of RNA that migrates on 10% (w/v) polyacrylamide gels between 5S and 4S RNA was detected in spinach chloroplasts. This RNA (referred to as 4.5 S RNA) was present in amounts equimolar to the 5S RNA and its molecular weight was estimated to be approx. 33 000. Fractionation of the chloroplast components showed that the 4.5S RNA was associated with the 50 S ribosomal subunit and that it could be removed by washing the ribosomes with a buffer containing 0.01 M-EDTA and 0.5 M-KCl. It did not appear to be a cleavage product of the labile 23 S RNA of spinach chloroplast ribosomes. When 125I-labelled 4.5 S RNA was hybridized to fragments of spinach chloroplast DNA produced by SmaI restriction endonuclease, a single fragment (mol.wt. 1.15 times 10(6)) became labelled. The same DNA fragment also hybridized to chloroplast 5 S RNA and part of the 23 S RNA. It was concluded that the coding sequence for 4.5 S RNA was part of, or immediately adjacent to, the rRNA-gene region in chloroplast DNA . A comparable RNA species was observed in chloroplasts of tobacco and pea leaves.  相似文献   

10.
11.
Chloroplast RNA metabolism is characterized by multiple RNA processing steps that require hundreds of RNA binding proteins. A growing number of RNA binding proteins have been shown to mediate specific RNA processing steps in the chloroplast, but little do we know about their regulatory importance or mode of molecular action. This review summarizes knowledge on chloroplast proteins that contain an RNA recognition motif, a classical RNA binding domain widespread in pro- and eukaryotes. Several members of this family respond to external and internal stimuli by changes in their expression levels and protein modification state. They therefore appear as ideal candidates for regulating chloroplast RNA processing under shifting environmental conditions.  相似文献   

12.
A method is described for extracting intact chloroplast and cytoplasmic ribosomal RNA from leaves of two higher plant species. Sodium dodecyl sulfate (1%) and 25 mM magnesium ions are required to inhibit ribonuclease action during RNA purification by phenol deproteinization. The ethanol-precipitated RNA product, including 23s chloroplast ribosomal RNA, is completely stable during electrophoresis in the absence of magnesium ions, even in the presence of EDTA. The invivo mole fraction of chloroplast ribosomes relative to cytoplasmic ribosomes is estimated. Bentonite is shown to cause preferential losses of chloroplast RNA during extraction.  相似文献   

13.
14.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

15.
Cotranslational protein targeting to membranes is regulated by two GTPases in the signal recognition particle (SRP) and the SRP receptor; association between the two GTPases is slow and is accelerated 400-fold by the SRP RNA. Intriguingly, the otherwise universally conserved SRP RNA is missing in a novel chloroplast SRP pathway. We found that even in the absence of an SRP RNA, the chloroplast SRP and receptor GTPases can interact efficiently with one another; the kinetics of interaction between the chloroplast GTPases is 400-fold faster than their bacterial homologues, and matches the rate at which the bacterial SRP and receptor interact with the help of SRP RNA. Biochemical analyses further suggest that the chloroplast SRP receptor is pre-organized in a conformation that allows optimal interaction with its binding partner, so that conformational changes during complex formation are minimized. Our results highlight intriguing differences between the classical and chloroplast SRP and SRP receptor GTPases, and help explain how the chloroplast SRP pathway can mediate efficient targeting of proteins to the thylakoid membrane in the absence of the SRP RNA, which plays an indispensable role in all the other SRP pathways.  相似文献   

16.
17.
Starting from isolated chloroplasts of the Chlamydomonas reinhardii cw 15 mutant, several mRNA-containing chloroplast subfractions, i.e. thylakoid-bound polysomes, detached polysomes or isolated RNA, were prepared and incubated in homologous and heterologous translation systems. In the reticulocyte lysate these fractions gave rise to strikingly different product patterns. A most prominent difference concerned the in-vivo rapidly labelled 32,000-dalton thylakoid polypeptide. Neither this membrane protein nor its 34,000-dalton precursor was formed when membrane-containing or free polysomes were translated, while the 34,000-dalton precursor was a main product of the RNA isolated from the same membranes. The influence of thylakoid membranes during translation was also observed in homologous translation systems with lysed chloroplasts supplemented with ATP. Membrane and soluble fractions, when translated separately, yielded product patterns which differed from each other, although the RNAs extracted from the respective fractions gave the same product patterns when translated in reticulocyte lysate; the latter included a soluble protein, the large subunit of ribulose-1,5-bisphosphate carboxylase, and a membrane protein, the 34,000-dalton precursor of the 32,000-dalton membrane protein, as major labelled translation products. These results point to a regulatory role of thylakoid membranes in the expression of chloroplast mRNA and argue against compartmentation of the chloroplast mRNAs between the soluble and membrane fractions.Abbreviation SDS sodium dodecyl sulfate  相似文献   

18.
Summary Multiplication of TMV-strains vulgare (light-green/dark-green mosaic symptoms) and flavum (severe yellow/green mosaic) had different effects on the ribosomal RNA of tobacco leaf chloroplasts. Vulgare inhibited chloroplast ribosomal RNA synthesis while having no effect on cytoplasmic ribosomal RNA synthesis (Fig. 2). Flavum inhibited chloroplast ribosomal RNA synthesis more severely than vulgare, and caused an earlier degradation of chloroplast ribosomal RNA than in control or vulgare-infected leaves (Fig. 1). Flavum also inhibited cytoplasmic ribosomal RNA synthesis. A connection between these differing effects on chloroplast ribosomal RNA metabolism and severity of visible symptoms is suggested, and discussed in relation to a possible influence on symptoms of denatured virus coat protein.Abbreviations TMV Tobacco Mosaic Virus - RNA Ribonucleic acid - DNA Deoxyribonucleic acid - m millions (in molecular weight values)  相似文献   

19.
In light-grown wheat (Triticum aestivum L.) seedlings, the amount of chloroplast and cytoplasmic ribosomal RNA increased to a maximum in the first leaf near the end of its growth and declined by about 60% in the following 3 days. While total ribosomal RNA was declining, labeled uracil was still incorporated into cytoplasmic ribosomal RNA, but the rate of incorporation into chloroplast ribosomal RNA fell by more than 80%, as did the incorporation of labeled leucine into fraction I protein. Either there is greater replacement of cytoplasmic ribosomal RNA than chloroplast ribosomal RNA in mature leaves, or chloroplasts are able to repress the incorporation of exogenous precursor when there is no net synthesis of RNA.  相似文献   

20.
Spinacia oleracia cholorplast 5S ribosomal RNA was end-labeled with [32P] and the complete nucleotide sequence was determined. The sequence is: pUAUUCUGGUGUCCUAGGCGUAGAGGAACCACACCAAUCCAUCCCGAACUUGGUGGUUAAACUCUACUGCGGUGACGAU ACUGUAGGGGAGGUCCUGCGGAAAAAUAGCUCGACGCCAGGAUGOH. This sequence can be fitted to the secondary structural model proposed for prokaryotic 5S ribosomal RNAs by Fox and Woese (1). However, the lengths of several single- and double-stranded regions differ from those common to prokaryotes. The spinach chloroplast 5S ribosomal RNA is homologous to the 5S ribosomal RNA of Lemna chloroplasts with the exception that the spinach RNA is longer by one nucleotide at the 3' end and has a purine base substitution at position 119. The sequence of spinach chloroplast 5S RNA is identical to the chloroplast 5S ribosomal RNA gene of tobacco. Thus the structures of the chloroplast 5S ribosomal RNAs from some of the higher plants appear to be almost totally conserved. This does not appear to be the case for the higher plant cytoplasmic 5S ribosomal RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号