首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and convenient procedure was developed for isolatingguard cell protoplasts (GCPs) from epidermal strips of Viciafaba L. The mean rates of O2 uptake in the dark and evolutionin light of the isolated GCPs were 200 and 290 µmol O2mg–1 Chl h–1, respectively, showing net O2 evolutionin light. Photosynthetic O2 evolution was suppressed completelyby 5 µM DCMU. Addition of 5 µM DCMU to the incubationmedium after 30 min of light exposure also suppressed the light-inducedswelling of GCP, indicating possible participation of PS IIin volume regulation in GCP. 4Present address: Division of Environmental Biology, The NationalInstitute for Environmental Studies, Yatabe machi, Tsukuba,Ibaraki 305, Japan. (Received December 17, 1983; Accepted March 21, 1984)  相似文献   

2.
In whole filaments of Anabaena cylindrica dark nitrogen-fixingactivity (measured as acetylene reduction) and respiration increasedwith the light intensity of a fixed period of preillumination,saturating at ca. 10,000 lux. With saturating light during preillumination,the amount and duration of dark nitrogen-fixing activity increasedwith length of preillumination, but respiration declined rapidlyin the dark. At dark respiration rates below 250 nmol O2 uptake mg protein–1?h–1(State 1) no significant nitrogen-fixing activity is observed.From 250 to 550 nmol O2 uptake?mg protein–1?h–1(State 2), nitrogen-fixing activity depends on O2 uptake whileabove 550 nmol O2 uptake?mg protein–1?h–1 (State3), nitrogen-fixing activity no longer increases with furtherincrease in O2 uptake rate. (Received June 18, 1983; Accepted November 10, 1983)  相似文献   

3.
Addition of salicylic acid (SA) to tobacco (Nicotiana tabacum)suspension culture immediately induced a rapid and transientgeneration of superoxide anion (O2), followed by a transientincrease in cytosolic free calcium ion concentration ([Ca2+]c).The level of SA-induced O2 was lowered by treatment withseveral scavengers of active oxygen species and a peroxidaseinhibitor, but not with an NADPH oxidase inhibitor. The SA-induced[Ca2+]c elevation was also lowered by inhibitors which effectivelylowered the O2 level. Inhibition of [Ca2+]c elevationby Ca2+ channel blockers and a Ca2+ chelator indicated thatextracellular Ca2+ was responsible for the increased [Ca2+]c.Among the several SA analogs, only compounds that actively inducedthe O2 generation also elevated [Ca2+]cIn addition, theinhibitory effects of SA analogs on catalase activity correlatedwell with their effects on the O2 generation and the[Ca2+]c elevation. SA-dependent O2 generation was shownto occur extracellularly, requiring both H2O2 and at least oneproteinaceous factor excreted from the cells. This factor wasdetermined to be a salicylhydroxamic acid-sensitive extracellularguaiacol-utilizing peroxidase. 4Present address: Isehara Research Laboratory, Kanto ChemicalCo., Inc., Suzukawa, Isehara, 259-1146 Japan.  相似文献   

4.
Mayoral, M. L., Plaut, Z. and Reinhold, L. 1985. Effect of sink-sourcemanipulations on the photosynthetic rate and carbohydrate contentof cucumber cotyledons.-J. exp. Bot. 36 1551–1558. The photosynthetic rate of cucumber cotyledons (Cucumis sativuscv. Dahla) reached a maximum value of 12 mg dm–2 h–1,10 d after emergence. In 12-d-old seedlings removal of one cotyledondoubled the CO2 fixation rate of the other, as observed 3 dafter treatment. When the primary leaf was removed, the photosyntheticrate of the cotyledons was decreased by 33%. At this stage ofgrowth elimination of the roots as a sink for assimilates bygirdling the hypocotyl affected neither the photosynthetic ratenor the carbohydrate content of the cotyledons. By contrast,in 18-d-old seedlings removal of the first leaf brought abouta 42% increase in the photosynthetic rate of the cotyledons.The simultaneous removal of the first leaf and one cotyledondoubled the rate of CO2 fixation of the remaining cotyledon.Girdling the hypocotyl lowered the photosynthetic rate of thecotyledons by 73%. In both 12- and 18-d-old seedlings a decreaseor increase in the sink-source ratio was correlated with anincrease or a decrease respectively in the carbohydrate contentof the cotyledons. The stomatal resistance of the cotyledonswas not affected by any of the treatments. The effect of sink-sourcemanipulations on photosynthesis and on the level of carbohydratespresent in the cotyledons was more evident in those seedlingsgrowing under high light intensity (580 µE m–2 s–1),than in those exposed to 300 µE m–2 s–1 Key words: Sink-source relationship, cotyledons, photosynthesis  相似文献   

5.
The effect of the intracellular concentration of ATP ([ATP]1)on the light-induced potential change (LPC) in tonoplast-freeChara cells was studied. The LPC was hardly affected by loweringthe [ATP]1 by about 1/10 or by raising it to about 10 timesthe normal cytoplasmic concentration (0.5–1.3 mM). Theinsensitivity of LPC to [ATP]1 excludes the possibility thatan increase in [ATP]1 due to photosynthesis may induce the LPC.However, extreme lowering of the [ATP]1 to about 1–2 µMcompletely inhibited LPC, although photosynthetic O2 evolutionwas not significantly inhibited. This fact supports the hypothesisthat light stimulates the putative H+pump fueled by ATP. Theuncoupling agents DNP and CCCP greatly depolarized the membrane,and inhibited LPC strongly, but they did not decrease [ATP]1.Photosynthetic O2 evolution was inhibited to some extent by2 µM CCCP and strongly inhibited by 0.1 mM DNP. Sincethe membrane resistance increased significantly, these chemicalsare believed to act on the membrane as an inhibitor of the electrogenicH+ pump not as an H+conductor. Introduction of 1 mM ATP intocells treated with uncouplers, to a large extent restored theirability to produce LPC although the membrane potential in darknesswas maintained at a low level. 1Present address: Niigata College of Pharmacy, 5829 Kamishinei-cho,Niigata 950-21, Japan. 2Present address: Department of Agricultural Chemistry, Collegeof Agriculture, Kyoto University, Kyoto 606, Japan. 3Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Tokyo 113, Japan. (Received March 9, 1979; )  相似文献   

6.
Dark uptake of inorganic 14C by offshore plankton was measuredat two depths at 36 stations in the Atlantic Ocean from 52°Sto 26°N, mainly along 30°W. The samples were incubatedfor 2 h with and without inhibition of biological activity withHgCl2. In addition, six time course experiments were performed.The mean dark uptake rate varied from 0.68 to 4.82 (µmolC m–3 h–1 over the transect and showed a significantpositive relationship with chlorophyll a. The dark uptake wasusually >5% of the maximum photosynthetic capacity (Pm),and higher values relative to Pm were associated with low valuesof Pm and not with high absolute dark values. A linear relationshipbetween dark uptake and Pm was found with a background value(y-axis intercept) of 0.51 (µmol C m–3 h–1and a slope of 0.77% of Pm. A major fraction of the dark signal,66–80% of the total signal, persisted in bottles treatedwith HgCl2, indicating that most of the dark signal was independentof biological activity. Time course experiments showed a lineardark uptake with time for the first hours, whereafter the uptakeceased. At stations with low concentrations of inorganic nitrogen[>1 (µmol (NH4++NO3)], a second stage was observedafter 3–8 h, probably due to an increase in bacterialactivity. The results suggest three mechanisms for the darkvalue in short-term incubations in oligotrophic waters. A backgroundvalue independent of biomass and incubation time which was thedominant part of the dark signal in samples with very low phytoplanktonbiomass (>0.3 p-g Chi a 1"). Another important part was residualsof 14C associated with plankton, probably adsorbed to compoundsinside the cells. This fraction was dominant in short-term incubationsat chlorophyll concentrations >0.3 p.g Chi a H. Active uptakeby living cells (total minus ‘HgCl2 uptake‘) wasonly a minor part of the dark signal in short-term incubations,but dominated at longer incubation time (>3–9 h), probablydriven by an increase in bacterial activity. A significant enhancementof the non-photosynthetic uptake of 14C was observed in light,probably associated with a carbon-concentrating mechanism inphytoplankton or light stimulation of ß-carboxylationactivity. The results strongly suggest that dark values shouldbe subtracted from the light uptake. This correction is particularlyimportant when photosynthetic rates are low, e.g. at low lightor in short-term incubations where a time-zero background becomesa significant part of the total uptake in light. Present address: National Environmental Research Institute,Department of Marine Ecology and Microbiology, Frederiksborgvej399, PO Box 358, DK-4000 Roskilde, Denmark  相似文献   

7.
Nitrate and ammonium uptake by plankton in an Amazon River floodplain lake   总被引:1,自引:0,他引:1  
Uptake of ammonium and nitrate by plankton was measured in tropicalLake Calado, Brazil. Nitrate uptake was strongly influencedby light and was light saturated at {small tilde}340 µEm–2 s–1. In contrast, uptake of ammonium was lessinfluenced by light, and saturated at {small tilde}250 µEm–2 s–1. Uptake rates of both forms of nitrogenwere inhibited by up to 80% at light intensities higher thanthose required for saturation. Concentrations of ammonium andnitrate also had a strong influence on uptake rates. Half-saturationconstants (0.3–5 µM) were usually greater than ambientconcentrations (0.1–0.6 µM), indicating that uptakerates at ambient concentrations were less than one-half of thesaturated rates. Ammonium is the more important type of inorganicnitrogen for plankton of Lake Calado because nitrate concentrationsremain low to undetectable except during periodic inputs ofnitrate-rich water from the Amazon River. Using the observeddependence of uptake on concentration and light, maximum uptakerates per unit chlorophyll were computed to be in reasonableagreement with rates derived from PBm values for carbon uptake. 1 Present address: Florida Department of Natural Resources,Marine Research Laboratory, St Petersburg, FL 33701, USA  相似文献   

8.
The Relationship Between Growth and Oxygen Uptake in Hypoxic Rice Seedlings   总被引:1,自引:0,他引:1  
Atwell, B. J. and Green way, H. 1987. The relationship betweengrowth and oxygen uptake in hypoxic rice seedlings.—J.exp. Bot. 38: 454–465. Rice seedlings (Oryza saliva L.) were grown in the dark forup to 4 d in solutions containing various concentrations ofO2. Compared with seedlings grown at 0·250 mol O2 m–3,the dry weight of the growing seedling was 14% lower at 0·110mol O2 m–3 and 60% lower at 0 mol O2 m–3. Decreasesin fresh weight were similar but not identical to decreasesin dry weight, possibly because leaf growth was suppressed evenabove 0·110 mol O2 m–3. Oxygen deficiency inhibitedroot growth more severely than coleoptile growth. Coleoptiles from seedlings grown in aerated solution were exposedto an atmosphere of pure N2 for 30 min. Anoxia caused a declinein ATP content and energy charge, suggestive of decreased oxidativephosphorylation. It is not clear whether the decline in oxidativephosphorylation was solely responsible for impaired growth inhypoxia. In seedlings growing at O2 concentrations less than 0·110mol O2 m–3, significant amounts of ethanol were synthesized.The rate of O2 uptake decreased markedly below 0·06 molO2 m–3; this was presumably near the external O2 concentrationat which oxidative phosphorylation became limited by the supplyof O2. The stage of development of the seedlings appeared toinfluence O2 uptake, possibly through changes in conductanceof the tissue to O2. Uncouplers were used to confirm that thecritical O2 concentration was dependent on O2 diffusion ratherthan enzyme kinetics. Impaired growth above 0·110 molO2 m–3 may have been due to a decreased activity of oxygenasesof relatively low affinity for O2, which in turn altered cellmetabolism. Key words: Growth, oxygen uptake, rice seedlings, hypoxia  相似文献   

9.
Chemiluminescence of luminol (CLL) was induced by illuminatedspinach chloroplast fragments. CLL was diminished by superoxidedismutase or under anaerobic conditions and increased by anautoxidizable electron acceptor, methyl viologen. The optimumpH for CLL was 10.0-10.5. Ferredoxin and cytochrome c reducing substance (CRS) did notaffect the intensity of CLL, but accelerated the dark decayin the absence of methyl viologen. In the presence of methylviologen, ferredoxin and CRS lowered the intensity and acceleratedthe dark decay. 3-(4-Chlorophenyl)-1,1-dimethylurea diminishedCLL. Carbonylcyanide m-chlorophenylhydrazone accelerated theinitial rate of CLL increase at low concentration and inhibitedit at high concentration. Half-decay time of CLL after the cessationof light was shortened by inhibiting electron transfer on theoxidizing side of photosystem II. We conclude that most of the CLL observed in illuminated chloroplastsis dependent on O2. The results also suggest that O2is reduced by reduced ferredoxin or CRS and oxidized on theoxidizing side of photosystem II. The half life of O2in illuminated chloroplasts was estimated from the half-decaytime of CLL to be a few sec. 1 Present address: Kyushu Dental College, Department of Biology,Kitakyushu 803, Japan. (Received May 30, 1977; )  相似文献   

10.
Exogenous proline-U-14C is readily metabolized to glutamate,ornithine, sugars, CO2, and organic acids, and is incorporatedinto protein by etiolated and green pumpkin cotyledons. As littletranslocation of proline from the cotyledons occur, it was proposedthat in young tissue proline is converted to glutamate, ornithineor sugar which are then readily translocated from the cotyledons.In older tissue some glutamate carbon derived from proline isalso used as an energy source and metabolized to CO2. As proteinsynthesis is occurring rapidly in these cotyledons, considerableproline is incorporated into new protein. After 10-hr, 15% ofthe absorbed radioactivity still remained as free proline. 1Present address: Instituto de Ciencias Biologicas, UniversidadeFederal de Vicosa, Vicosa, Minas Gerais, Brasil. (Received February 1, 1974; )  相似文献   

11.
Wheat plants were grown in a controlled environment with daytemperatures of 18 ?C and with 500 µ Einsteins m–28–1 of photosynthetically active radiation for 16 h. Beforeanthesis and 2 to 3 weeks after, rates of net photosynthesiswere measured for leaves in 2 or 21% O2 containing 350 vpm CO2at 13, 18, 23, and 28 ?C and with 500 µEinsteins m–2s–1 of photosynthetically active radiation. Also, underthe same conditions of light intensity and temperature, therates of efflux of CO2 into CO2-free air were measured and,for mature flag leaves 3 to 4 weeks after anthesis, gross andnet photosynthesis from air containing 320 vpm 14CO2 of specificactivity 39?7 nCi µmol–1. When the O2 concentration was decreased from 21 to 2% (v/v)the rate of net photosynthesis increased by 32 per cent at thelowest temperature and 54 per cent at the highest temperature.Efflux of CO2 into CO2-free air ranged from 38 per cent of netphotosynthesis at 13 ?C to 86 per cent at 28 ?C. Gross photosynthesis,measured by the 14C assimilated during 40 s, was greater thannet photosynthesis by some 10 per cent at 13 ?C and 17 per centat 28 ?C. These data indicate that photorespiration was relativelygreater at higher temperatures.  相似文献   

12.
The properties of photosynthetic O2 evolution by mesophyll cellchloroplasts (MCC) and guard cell chloroplasts (GCC) isolatedfrom protoplasts of Vicia faba L. have been studied and effectson O2 evolution of factors known to regulate stomatal movementshave been compared. The O2 evolution of GCC was CO2-dependent.The saturating light intensity for O2 evolution was between150 and 200 µmol m–2s–1 for MCC and was between400 and 1,000µmol m–2s–1 for GCC. Light quality(red vs. blue) had no significant effect on O2 evolution byeither MCC or GCC. The O2 evolution rate of MCC was stronglydependent on external K+ concentration, but GCC did not respondsignificantly to variations in external K+ concentration between0 and 250 mM. The optimal external pH for O2 evolution by MCCwas approximately 7.5, and either higher or lower external pHsignificantly inhibited O2 evolution. However, O2 evolutionby GCC was only slightly enhanced when external pH was increasedfrom 6.0 to 8.0. Our observation of differential sensitivityof MCC and GCC to light intensity and to variations of cytoplasmicK+ and pH may indicate differential regulation of photosynthesisin MCC and GCC. 1Current address: Biology Department, Pennsylvania State University,208 Mueller Laboratory, University Park, PA 16802, U.S.A.  相似文献   

13.
Activity of glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase, EC 1.1.1.49 [EC] ) preparation from sweet potatoroot tissue was markedly altered in the presence of variousions. Cations or anions were effective in the following order:Na$, K$>Tris$>NH4$>Mg2$>Ca2$, or Cl>NO3,HPO42–>SO42–>HCO3. Activity was inhibitedat high concentrations of Ca2$, and HCO3,. In an investigationon the dependence of the activity on pH, two activity peakswere clearly observed at low ionic strength. Ionic strength altered both the Km and Vmax for glucose 6-phosphate(G6P). A Lineweaver-Burk plot for the enzyme, with respect toG6P, showed a bimodal nature at low ionic strength; suggestingnegative cooperativity. Deviation from linearity of the plotwas less with an increase in the ionic strength. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku, Tokyo 113. (Received September 18, 1971; )  相似文献   

14.
ROBSON  M. J. 《Annals of botany》1973,37(3):501-518
The rates of net photosynthesis (Pn,c) in the light (85 W m–2visible), and respiration in the dark, of a simulated swardof S24 ryegrass were measured for 12 weeks during its developmentfrom a collection of two-leaved seedlings to a closed canopywith an LAI of 23 (15 of green leaf laminae). By the sixth week light interception was complete (LAI = 10.6)and Pn,c had risen to 24 mg CO2 dm–2 h–1, similarto rates recorded in the field. Photosynthetic functions (lightresponse curves) showed that the swards remained unsaturatedup to energy receipts of almost 400 W m–2, whereas singleleaves were light saturated at about 130 W m–2. Earlyin the development of the sward LAI had a greater effect onPn,c than radiation receipt, later the reverse was true. Thegrowth habit of the sward ranged from moderately erect (an Svalue of 0.72) to moderately prostrate (‘S’ = 0.37),while the ability of the two youngest fully expanded leaveson a tiller to make use of light in photosynthesis declinedas the sward increased in density from values of A max of 20to 5 mg CO2 dm–2 h–1. By varying the values of Sand A max fed into a model of canopy photosynthesis, withinthe above limits, it was demonstrated that, in practice, A maxis a greater determinant of canopy photosynthesis than S, exceptat low LAI where a prostrate sward has a marked advantage overan erect one. The rate of dark respiration rose as the swards increased inweight, although not in proportion to it, until the ninth weekwhen a ceiling yield of live plant tissue was reached. Respiratorylosses from the sward came almost equally from a component associatedwith maintenance (Rm) and one associated with growth (Rg). Therate of Rm was estimated to be about 0.014 g day–1 pergram of plant tissue, and that of Ra about 0.25 g per gram ofnew tissue produced—both close to theoretical values.The measured dry matter production curve of the swards was comparedwith that estimated from the gas analysis data. Similarly therates of gross photosynthesis estimated from the gas analysisdata were compared with the predictions of the mathematicalmodel. In both cases the fit was reasonably good. A balancesheet was drawn up; of every 100 units of carbon fixed, 45 werelost in respiration and 16 as dead leaf, 5 ended up in the rootand 6 in the stubble; only 28 remained as harvestable live leaftissue.  相似文献   

15.
Bisulfite compounds are shown to be nonspecific inhibitors ofphotosynthetic processes and of ion transport in green tissues.CO2 fixation and light-dependent transient changes in externalpH are inhibited about 50% by 5x10–4 M glyoxal-Na-bisulfite.Chloride uptake in the light and in the dark is inhibited tothe same extent at this concentration. At 5x10–3 M theinhibitor reduces ATP levels in the light and in the dark, andeffects on glycolate oxidase and PEP carboxylase are observed.The extent of inhibition is dependent on time of treatment withglyoxal-Na-bisulfite and freshly prepared NaHSO3 is equallyas effective as the addition compound. Possible explanations of the bisulfite effects and the relationshipsto SO2 effects on photosynthesis are discussed. (Received September 1, 1971; )  相似文献   

16.
In the marine coccolithophorid, Emiliania huxleyi, CaCO3 productionunder illumination showed a lag phase for about 3 h and thenincreased greatly. During the lag phase the rate of CaCO3 productionin the light was similar to that in the dark. The productionof CaCO3 in the dark was inhibited by the addition of 170 µMCCCP, 1 mM KCN and 1 mM SHAM. These results suggest that a littleproduction of CaCO3 is supported by energy from mitochondrialrespiration, but that large amount of CaCO3 production requiresphotosynthesis. 1Present address: SDS Biotech K.K., Tsukuba Technology Center,Midorigahara 2-1, Tsukuba, Ibaraki, 300-26 Japan  相似文献   

17.
Illuminated chloroplasts isolated from SO2-fumigated spinachleaves accumulated more H2O2 than those from non-fumigated ones.This H2O2 formation was dependent on light and was inhibitedby DCMU. It also was depressed by cytochrome c and superoxidedismutase (EC 1.15.1.1 [EC] ). The addition of sulfite to rupturedchloroplasts isolated from non-fumigated leaves caused an H2O2accumulation that accompanied O2 uptake. Spinach leaves losttheir catalase (EC 1.11.1.6 [EC] ), ascorbate peroxidase and glutathionereductase (EC 1.6.4.2 [EC] ) activities at the beginning of SO2 fumigation,when H2O2 was accumulated. These results suggest that the accumulationof H2O2 in SO2-fumigated spinach leaves is caused by the increasein O2production, the precursor for H2O2, with a sulfite-mediatedchain reaction at the reducing site of photosystem I, and byinactivation of the H2O2 scavenging system. (Received October 7, 1981; Accepted June 16, 1982)  相似文献   

18.
  1. Chlorella cells and spinach chioroplasts, whose catalase activityhad been more than 90% inhibited by 10–5 M azide, werefound to decompose H2O2 photochemically to liberate oxygen,indicating that H2O2 was used as an oxidant of the HILL reaction.
  2. That, however, the observed phenomena cannot be fully accountedfor in terms of the HILL reaction with H2O2 was revealed bythe observation that an extract of Chiorella cells, which hadbeen completely freed from chlorophyll, also showed a light-acceleratedO2 evolution from H2O2 in the presence of 105 M azide.This extract contained a large quantity of catalase, which seemedto have been, in some way, involved in the reaction in question.
  3. The catalatic H2O2 decomposition caused by crystalline catalaseof mammalian liver (in the presence of 10–5 M azide) wasnot accelerated by the effect of light.
1 Present address: Department of Biology, Faculty of Science,Niigata University, Niigata. (Received June 4, 1961; )  相似文献   

19.
When Chlorella vulgaris 11h, Chlorella vulgaris C-l, Chlamydomonasreinhardtii, Chlamydomonas moewusii, Scenedesmus obliquus, orDunaliella tertiolecta were illuminated in with 0.5 mM NaHCO3,the pH of the medium increased in a few minutes from 6 to about9 or 10. The alkalization, which was accompanied by O2 evolution,was dependent on light, external dissolved inorganic carbon(DIC) as HCO-3, and algae grown or adapted to a low, air-levelCO2 in order to develop a DIC concentrating mechanism. Therewas little pH increase by algae without a DIC concentratingprocess from growth on 3% CO2 in air. Photosynthetic O2 evolutionwithout alkalization occurred using either internal DIC or externalCO2 at acidic pH. The PH increase stopped between pH 9 to 10,but the alkalization would restart upon re-acidification betweenpH 6 and 8. Alkalization was suppressed by the carbonic anhydraseinhibitors, acetazolamide, ethoxyzolamide or carbon oxysulfide.The pH increase appeared to be the consequence of the externalconversion of HCO3 into CO2 plus OH during photosynthesisby cells with a high affinity for CO2 uptake. Cells grown onhigh CO2 to suppress the DIC pump, when given low levels ofHCO3 in the light, acidified the medium from pH 10 to7. Air adapted Scenedesmus cells with a HCO3 pump, aswell as a CO2 pump, alkalized the medium very rapidly in thelight to a pH of over 10, as well as slower in the dark or inthe light with DCMU or without external DIC and O2 evolution.Alkalization of the medium during photosynthetic DIC uptakeby algae has been considered to be part of the global carboncycle for converting H2CO3 to HCO3 and for the formationof carbonate salts by calcareous algae from the alkaline conversionof bicarbonate to carbonate. These processes seem to be a consequenceof the algal CO2 concentrating process. 1Present address: Department of Biology, Faculty of Science,Niigata University, Niigata, 950-21 Japan.  相似文献   

20.
The short-term dependence of NO3 uptake upon photosynthesisand sugar supply to the roots of soybean plants was investigatedin a series of experiments where CO2 availability, light intensityor conduction of phloem sap to the roots were severely limited.Removal of CO2 from the atmosphere or girdling of the stem equallyprevented the stimulation of NO3 uptake when plants weretransferred from darkness to the light. The effect of thesetwo treatments can be reversed by CO2 re-supply or by additionof 10 mM glucose in the nutrient solution, respectively. Glucosewas also more effective in stimulating NO3 uptake byintact plants in darkness than in light. Collectively, theseobservations are interpreted as evidence that the diurnal changesin NO3 uptake are due to decreased phloem transport ofphotosynthates in darkness. Accordingly, the magnitude of thesechanges was much dependent on starch accumulation in the leavesat the end of the photo-period. Shading the plants lowered thisaccumulation, and resulted in an amplification of the diurnalchanges in NO3 uptake. These results are discussed inconnection with the hypothesis that the carbon-dependent plasticityof the night/day ratio of NO3 uptake is an importantfeature of the co-ordination of the acquisition of N and C bythe plant. Key words: Glycine max, light/dark cycle, NO3 uptake, C and N acquisition  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号