首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The whole plants of Carpesium genus are used in traditional medicine as anti-pyretic, analgesic and vermifugic, including a topical application for sores and inflammation. A previous study on Carpesium genus suggested that the antiplasmodial activity against Plasmodium falciparum was due to the existence of 11(13)- dehydroivaxillin (DDV) from EtOAc extracts of C. ceruum (Compositae). Here, the antimalarial activity of DDV was evaluated against Plasmodium berghei in mice. The LD50 of the compound was determined as 51.2 mg/kg, while doses of 124 mg/kg and above were found to be lethal to mice. DDV (2, 5, 10 mg/kg/day) exhibited a significant blood schizontocidal activity in 4-day early infection, repository evaluation and in an established infection with a significant mean survival time comparable to that of the standard drug, chloroquine, 5 mg/kg/day. DDV possesses a promising antiplasmodial activity, which can be exploited in malaria therapy.  相似文献   

2.
The effect of antimalarial drugs on immune responses to the malaria infection is evaluated in vivo using two experimental self-cured rodent models. BALB/c and DBA/2 mice were infected by Plasmodium yoelii 17XNL and 17XL strains, respectively, and then treated with different doses of antimalarial drugs: chloroquine (228mg/kg or 114mg/kg of the body weight) or artesunate (78mg/kg or 39mg/kg). The effect of antimalarial drugs on host immune responses was evaluated by parasitemia, splenocyte IFN-gamma production level, and parasite-specific IgG level in the serum, however, no significant differences were observed between drug-treated and untreated groups. Moreover, most of the infected mice of all groups showed the ability to resist homologous reinfection (challenged on day 60 post-infection), only a few mice experienced transient, low parasitemia. The rechallenged mice were accompanied by high level of parasite-specific IgG. Therefore, this research implicated that, for BALB/c and DBA/2 mice, chloroquine or artesunate treatment of blood-stage P. yoelii infections does not compromise acquired immunity to malaria in either primary infection or upon rechallenge.  相似文献   

3.
Abstract

This study reports on the design, synthesis and antiparasitic activity of three new semi-synthetic naphthoquinones structurally related to the naturally-occurring lapachol and lapachone. Of the compounds tested, 3-(3-methylbut-1-en-1-yl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl acetate (1) was the most active against Plasmodium falciparum among both natural and semi-synthetic naphthoquinones, showing potent and selective activity. Compound 1 was able to reduce the in vitro parasite burden, in vitro parasite cell cycle, as well as the blood parasitemia in Plasmodium berghei-infected mice. More importantly, infection reduction under compound 1-treatment was achieved without exhibiting mouse genotoxicity. Regarding the molecular mechanism of action, this compound inhibited the hemozoin crystal formation in P. falciparum treated cells, and this was further confirmed by observing that it inhibits the β-hematin polymerization process similarly to chloroquine. Interestingly, this compound did not affect either mitochondria structure or cause DNA fragmentation in parasite treated cells. In conclusion, we identified a semi-synthetic antimalarial naphthoquinone closely related to isolapachol, which had stronger antimalarial activity than lapachol.  相似文献   

4.
We recently demonstrated that human p38 mitogen-activated protein kinase (MAPK) inhibitors reduced in vitro and in vivo replication of the protozoan parasites Toxoplasma gondii and Encephalitozoon cuniculi. In this study, we assessed the efficacy of five p38 MAPK inhibitors to block the replication of Plasmodium falciparum in human erythrocytes cultured ex vivo and demonstrate that the pyridinylimidazole RWJ67657 and the pyrrolobenzimidazole RWJ68198 reduced P. falciparum replication, yielded trophozoites that were greatly diminished in size at 24 h, and that these two agents interfered with stage differentiation. Interestingly, the chloroquine-resistant strain W2 was significantly more sensitive to these drugs than was the chloroquine-sensitive strain HB3. These results suggest that pyridinylimidazoles and pyrrolobenzimidazoles designed to inhibit human p38 MAPK activation can be developed to treat malaria.  相似文献   

5.
A novel series of 6-(2-chloroquinolin-3-yl)-4-substituted-phenyl-6H-1,3-oxazin-2-amines were synthesized and evaluated for in vitro antimalarial efficacy against chloroquine sensitive (MRC-02) as well as chloroquine resistant (RKL9) strains of Plasmodium falciparum. The activity tested was at nanomolar concentration. β-Hematin formation inhibition activity (BHIA50) of oxazines were determined and correlated with antimalarial activity. A reasonably good correlation (r?=?0.49 and 0.51, respectively) was observed between antimalarial activity (IC50) and BHIA50. This suggests that antimalarial mode of action of these compounds seems to be similar to that of chloroquine and involves the inhibition of hemozoin formation. Some of the compounds were showing better antimalarial activity than chloroquine against resistant strain of P. falciparum and were also found to be active in the in vivo experiment.  相似文献   

6.
Dietary riboflavin deficiency is known to diminish malarial parasitemia. In this study, we determined whether imipramine and amitriptyline, drugs which inhibit riboflavin metabolism, have antimalarial efficacy. In addition, we evaluated whether these drugs, like other antimalarial agents, increase the hemolytic response to ferriprotoporphyrin IX (FP). The growth of Plasmodium falciparum (FCR3) in the absence and presence of these drugs (10 to 75 μM) was measured by determining (3H)hypoxanthine uptake by intraerythrocytic parasites for 48 h in RPMI 1640 medium. The uptake of (3H)hypoxanthine was significantly reduced in a dose-dependent manner by both imipramine and amitriptyline. The IC50 values of imipramine and amitriptyline at 48 h were 56 and 45 μM, respectively. Both drugs enhanced hemolysis induced by FP (10 or 20 μM). No hemolysis by these drugs was detected in the absence of FP. It is concluded that the tricyclic antidepressants, imipramine and amitriptyline, possess substantial antimalarial properties.  相似文献   

7.
Antimalarial activity of anthothecol, a limonoid of Khaya anthotheca (Meliaceae) against Plasmodium falciparum was tested using a [3H]-hypoxanthine and 48 h culture assay in vitro. Anthotechol showed potent antimalarial activity against malaria parasites with IC50 values of 1.4 and 0.17 μM using two different assays. Also, gedunin had antimalarial activity with IC50 values of 3.1 and 0.14 μM. However, the citrus limonoids, limonin and obacunone did not show any antimalarial activity. The antimalarial activities were compared with the three currently used antimalarial medicines quinine, chloroquinine and artemisinin.  相似文献   

8.
Malaria is a global health problem leading to the death of 435,000 cases in tropical and sub-tropical zones. Spread and emergence of increasing resistance to the antimalarial drugs are the major challenges in the control of malaria. Therefore, searching for alternative antimalarial drugs is urgently needed, and combination treatment preferred as an approach to address this. This study aimed to evaluate in vivo antimalarial activity of zingerone (ZN), and its combination with dihydroartemisinin (DHA) against Plasmodium berghei infected mice. ZN was prepared and tested for acute oral toxicity according to the OECD guideline. In vivo antimalarial activity of different doses of ZN and combination with DHA were determined using the 4-day suppression test. The results showed that ZN was found to be safe and no mortality within the observation period, and the lethal dose might be greater than the limited dose of 1000 mg/kg. For in vivo antimalarial test, ZN exhibited significant (p < .05) parasitemia inhibition of 30.65% and 45.75% at the doses of 50 mg/kg and 100 mg/kg, respectively. Moreover, effective dose 50 (ED50) of ZN was 29.76 mg/kg. The combination treatment of ZN and DHA at the doses of ED50 values at the fixed ratio 1:1 was found to present significant (p < .001) antimalarial activity as compared to ZN and DHA treated alone with markedly prolonged mean survival time. Additionally, the combination index (0.83384) revealed the synergistic antimalarial effect. It can be concluded that ZN exerted potent antimalarial activity with no toxicity, and combination treatment with DHA produced the synergistic antimalarial effect.  相似文献   

9.
Total and differential white blood cell (WBC) counts are basic and essential indicators in any type of illness resulting from infection. In malaria, WBC counts are generally characterized as low to normal during treatment. WBC-counts data, before and during treatment with artemisinin derivatives, was gathered for patients with either Plasmodium falciparum or Plasmodium vivax infection (at 28-day follow-up), to investigate dynamic changes in WBC count. We analyzed and compared the WBC counts of 1310 inpatients presenting with uncomplicated P. falciparum and P. vivax malaria at the Hospital for Tropical Diseases, in Bangkok, Thailand. Before-treatment, a statistically significant negative correlation was found between initial WBC count and highest temperature on admission. Before and during treatment, WBC counts were significantly lower in P. falciparum than P. vivax infection on days 0 and 7, but the numerical difference was small. We also found clinically significantly low WBC counts during the acute stages of both types of malaria, which subsequently normalized by day 28 follow-up. This finding has important clinical implications for the conventional method of estimating parasitemia using an assumed WBC count of 8000 cells/μL. The most significant finding in our analysis is that WBC counts in acute P. falciparum and P. vivax malaria are significantly lower than previously assumed for estimating malaria-parasite density. However, these abnormalities returned to normal within several weeks after artemisinin-derivative-based treatment.  相似文献   

10.
Piperazine and pyrrolidine derivatives were synthesised and evaluated for their capacity to inhibit the growth of Plasmodium falciparum chloroquine-resistant (FCR-3) strain in culture. The combined presence of a hydroxyl group, a propane chain and a fluor were shown to be crucial for the antiplasmodial activity. Five compounds of the aryl-alcohol series inhibited 50% of parasite growth at doses ?10 μM. The most active compound 1-(4-fluoronaphthyl)-3-[4-(4-nitro-2-trifluoromethylphenyl)piperazin-1-yl] propan-1-ol was almost 20–40 times more active on P. falciparum (IC50: 0.5 μM) than on tumorogenic and non-tumorogenic cells. In vivo it has a very weak effect; inhibiting 35% of parasite growth only, at 10 mg/kg/day against Plasmodium berghei infected mice without any impact on survival time. In silico molecular docking study and molecular electrostatic potential calculation revealed that this compound bound to the active site of Plasmodium plasmepsin II enzyme.  相似文献   

11.
Summary The study of the growth rate and incorporation of [3H]hypoxanthine and [14C]isoleucine showed that in vitro variations ofPlasmodium falciparum parasitemia levels and incorporation rates of the two radiolabeled molecules have been correlated. In our experimental conditions,P. falciparum blood forms in vitro tolerate osmolalities ranging from 180 to 360 mOsm. A weak hypo-osmolality (241 mOsm) favored the development of the parasite. The highest sensitivity of the parasite to osmotic variations was observed during schizogony. The merozoite stage and reinvasion process seemed less affected by hypo-osmolalities than by hyperosmolalities. The minor alterations in morphology of the parasites in hypo- and hyperosmotic media suggested thatP. falciparum may have efficient osmoregulatory power.  相似文献   

12.
13.
14.
Plasmodium falciparum malaria affects about 500 million people worldwide and is responsible for approximately 2.5 million deaths per year. Glycosylphosphatidylinositol (GPI) is the major anchor for membrane-associated proteins of P. falciparum and GPI plays a major role as a toxin in the pathology of malaria. Therefore, we tested the hypothesis that GPI, like LPS, induces apoptosis in vitro and in vital organs of mice. Our data does not provide evidence for direct cardiomyocyte apoptosis induced by GPI in vitro. However, in vivo injection of GPI induced limited apoptosis in mouse liver and spleen tissue. Apoptosis may be due to a direct GPI apoptotic effect or to an indirect effect via the induction of TNFα and nitric oxide production.  相似文献   

15.
We report here the synthesis and biological evaluation of a series of 37 compounds as precursors of potent antimalarial bis-thiazolium salts (T3 and T4). These prodrugs were either thioester, thiocarbonate or thiocarbamate type and were synthesized in one step by reaction of an alkaline solution of the parent drug with the appropriate activated acyl group. Structural variations affecting physicochemical properties were made in order to improve oral activity. Twenty-five of them exhibited potent antimalarial activity with IC50 lower than 7 nM against Plasmodium falciparum in vitro. Notably, 3 and 22 showed IC50 = 2.2 and 1.8 nM, respectively. After oral administration 22 was the most potent compound clearing the parasitemia in Plasmodium vinckei infected mice with a dose of 1.3 mg/kg.  相似文献   

16.
Tachia sp. are used as antimalarials in the Amazon Region and in vivo antimalarial activity of a Tachia sp. has been previously reported. Tachia grandiflora Maguire and Weaver is an Amazonian antimalarial plant and herein its cytotoxicity and antimalarial activity were investigated. Spectral analysis of the tetraoxygenated xanthone decussatin and the iridoid aglyone amplexine isolated, respectively, from the chloroform fractions of root methanol and leaf ethanol extracts was performed. In vitro inhibition of the growth of Plasmodium falciparum Welch was evaluated using optical microscopy on blood smears. Crude extracts of leaves and roots were inactive in vitro. However, chloroform fractions of the root and leaf extracts [half-maximal inhibitory concentration (IC50) = 10.5 and 35.8 µg/mL, respectively] and amplexine (IC50= 7.1 µg/mL) were active in vitro. Extracts and fractions were not toxic to type MRC-5 human fibroblasts (IC50> 50 µg/mL). Water extracts of the roots of T. grandiflora administered by mouth were the most active extracts in the Peters 4-day suppression test in Plasmodium berghei-infected mice. At 500 mg/kg/day, these extracts exhibited 45-59% inhibition five to seven days after infection. T. grandiflora infusions, fractions and isolated substance have potential as antimalarials.  相似文献   

17.
Malaria is one of the world's deadliest diseases and is becoming an increasingly serious problem as malaria parasites develop resistance to most of the antimalarial drugs used today. We previously reported the in vitro and in vivo antimalarial potencies of 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) and 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) against Plasmodium falciparum and Plasmodium berghei parasites. To improve water-solubility for synthetic peroxides, a variety of cyclic peroxides having carboxyl functionality was prepared based on the antimalarial candidate, N-251, and their antimalarial activities were determined. The reactions of N-89 and its derivatives with Fe(II) demonstrated a highly efficient formation of the corresponding carbon radical which may be suspected as a key for the antiparasitic activity.  相似文献   

18.
Gametocytocidal activities of pyronaridine and DNA topoisomerase II inhibitors against two isolates of multidrug-resistant Plasmodium falciparum, KT1 and KT3 were determined. After sorbitol treatment, pure gametocyte cultures of Plasmodium falciparum containing mostly young gametocytes (stage II and III) obtained on day 11 were exposed to the drugs for 48 h. The effect of the drugs on gametocyte development was assessed by counting gametocytes on day 15 of culture. Pyronaridine was the most effective gametocytocidal drug against P. falciparum isolates KT1 and KT3 with 50% inhibitory concentration of 6 and 20 nM, respectively. Moreover, the 50% inhibitory concentration of pyronaridine was lower than that of primaquine which is the only drug used to treat malaria patients harboring gametocytes. Prokaryotic (norfloxacin) and eukaryotic (amsacrine and etoposide) DNA topoisomerase II inhibitors were only effective against asexual but not sexual stages of the malaria parasites. Pyronaridine has both schizontocidal and gametocytocidal activities against the human malaria parasite, P. falciparum.  相似文献   

19.
Naphthoquine (NQ), as a component of ARCO® which composed of NQ and artemisinin, is a new 4-aminoquinoline antimalarial synthesized by our institute. Here, a naphthoquine-resistant line of rodent malaria parasite was selected through exposing Plasmodium berghei Keyberg 173 strain to progressively increased drug pressure. The selected strain showed a more than 200-fold decreased susceptibility to NQ with a stable resistance phenotype after 10 serial passages without drug pressure or when cryopreserved over a period of 12 months. In a cross-resistance assay, the susceptibility of NQ-resistant parasites to chloroquine was decreased by 14.5-fold. These findings imply NQ-resistant parasites might be selected by long-term usage of NQ in epidemic areas and the efficacy of NQ or ARCO® in chloroquine-resistant Plasmodium falciparum epidemic areas should be monitored closely.  相似文献   

20.
Plasmodium falciparum is responsible for the majority of life-threatening cases of human malaria. The global emergence of drug-resistant malarial parasites necessitates identification and characterization of novel drug targets. Carbonic anhydrase (CA) is present at high levels in human red cells and in P. falciparum. Existence of at least three isozymes of the α class was demonstrated in P. falciparum and a rodent malarial parasite Plasmodium berghei. The major isozyme CA1 was purified and partially characterized from P. falciparum (PfCA1). A search of the malarial genome database yielded an open reading frame similar to the α-CAs from various organisms, including human. The primary amino acid sequence of the PfCA1 has 60% identity with a rodent parasite Plasmodium yoelii enzyme (PyCA). The single open reading frames encoded 235 and 252 amino acid proteins for PfCA1 and PyCA, respectively. The highly conserved active site residues were also found among organisms having α-CAs. The PfCA1 gene was cloned, sequenced and expressed in Escherichia coli. The purified recombinant PfCA1 enzyme was catalytically active. It was sensitive to acetazolamide and sulfanilamide inhibition. Kinetic properties of the recombinant PfCA1 revealed the authenticity to the wild type enzyme purified from P. falciparum in vitro culture. Furthermore, the PfCA1 inhibitors acetazolamide and sulfanilamide showed good antimalarial effect on the in vitro growth of P. falciparum. Our molecular tools developed for the recombinant enzyme expression will be useful for developing potential antimalarials directed at P. falciparum carbonic anhydrase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号