首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new compilation of pollen and packrat midden data from western North America provides a refined reconstruction of the composition and distribution of biomes in western North America for today and for 6000 and 18,000 radiocarbon years before present (14C yr bp ). Modern biomes in western North America are adequately portrayed by pollen assemblages from lakes and bogs. Forest biomes in western North America share many taxa in their pollen spectra and it can be difficult to discriminate among these biomes. Plant macrofossils from packrat middens provide reliable identification of modern biomes from arid and semiarid regions, and this may also be true in similar environments in other parts of the world. However, a weighting factor for trees and shrubs must be used to reliably reconstruct modern biomes from plant macrofossils. A new biome, open conifer woodland, which includes eurythermic conifers and steppe plants, was defined to categorize much of the current and past vegetation of the semiarid interior of western North America. At 6000 14C yr bp , the forest biomes of the coastal Pacific North‐west and the desert biomes of the South‐west were in near‐modern positions. Biomes in the interior Pacific North‐west differed from those of today in that taiga prevailed in modern cool/cold mixed forests. Steppe was present in areas occupied today by open conifer woodland in the northern Great Basin, while in the central and southern Rocky Mountains forests grew where steppe grows today. During the mid‐Holocene, cool conifer forests were expanded in the Rocky Mountains (relative to today) but contracted in the Sierra Nevada. These differences from the forests of today imply different climatic histories in these two regions between 6000 14C yr bp and today. At 18,000 14C yr bp , deserts were absent from the South‐west and the coverage of open conifer woodland was greatly expanded relative to today. Steppe and tundra were present in much of the region now covered by forests in the Pacific North‐west.  相似文献   

2.
Late Quaternary biomes of Canada and the eastern United States   总被引:7,自引:1,他引:6  
Pollen data have been used to construct biome maps for today, 6000 14C yr bp and 18,000 14C yr bp for Canada and the eastern United States. The inferred modern biome distributions agree well with independent reconstructions of North American vegetation prior to European settlement. Some discrepancies between the pollen data and the modern potential vegetation are caused by post‐settlement clearing of the landscape and the consequent increase of herbaceous types in the recent pollen record. Biome distributions at 6000 14C yr bp reflected the warmer and drier conditions then prevalent in the continental interior, but the overall position of biomes was similar to that of today. The boreal treeline in North America was not significantly north of its present position, in contrast to the 100–200 km shift reported for Siberia. At the last glacial maximum (18,000 14C yr bp ), steppe and tundra were prevalent in the Midwest and north‐western Canada, and coniferous forests and woodlands grew in eastern North America. The open vegetation at 18,000 14C yr bp was probably due to drier conditions and/or lower concentrations of atmospheric CO2. The composition and physical structure of biomes is not constant over time. Mid‐Holocene biomes were similar in structure to those of today, but shifts in the relative importance of individual plant functional types are large enough that the physical properties of biomes, such as albedo, canopy conductance and surface roughness, are likely to have varied even during the Holocene. Last glacial maximum biomes were structurally different from their modern counterparts. The biome maps therefore may obscure significant vegetational changes in space and time during the late Quaternary. The difference between the highest and next highest affinity scores for each sample measures how strongly affinity scores discriminate among biomes. For many biomes, the difference is not large, and affinity score ties are not uncommon, highlighting the importance of tie‐break procedures when using the biomization method.  相似文献   

3.
Pollen data from China for 6000 and 18,000 14C yr bp were compiled and used to reconstruct palaeovegetation patterns, using complete taxon lists where possible and a biomization procedure that entailed the assignment of 645 pollen taxa to plant functional types. A set of 658 modern pollen samples spanning all biomes and regions provided a comprehensive test for this procedure and showed convincing agreement between reconstructed biomes and present natural vegetation types, both geographically and in terms of the elevation gradients in mountain regions of north‐eastern and south‐western China. The 6000 14C yr bp map confirms earlier studies in showing that the forest biomes in eastern China were systematically shifted northwards and extended westwards during the mid‐Holocene. Tropical rain forest occurred on mainland China at sites characterized today by either tropical seasonal or broadleaved evergreen/warm mixed forest. Broadleaved evergreen/warm mixed forest occurred further north than today, and at higher elevation sites within the modern latitudinal range of this biome. The northern limit of temperate deciduous forest was shifted c. 800 km north relative to today. The 18,000 14C yr bp map shows that steppe and even desert vegetation extended to the modern coast of eastern China at the last glacial maximum, replacing today’s temperate deciduous forest. Tropical forests were excluded from China and broadleaved evergreen/warm mixed forest had retreated to tropical latitudes, while taiga extended southwards to c. 43°N.  相似文献   

4.
Pollen data from 18,000 14C yr bp were compiled in order to reconstruct biome distributions at the last glacial maximum in southern Europe and Africa. Biome reconstructions were made using the objective biomization method applied to pollen counts using a complete list of dryland taxa wherever possible. Consistent and major differences from present‐day biomes are shown. Forest and xerophytic woods/scrub were replaced by steppe, both in the Mediterranean region and in southern Africa, except in south‐western Cape Province where fynbos (xerophytic scrub) persisted. Sites in the tropical highlands, characterized today by evergreen forest, were dominated by steppe and/or xerophytic vegetation (cf. today’s Ericaceous belt and Afroalpine grassland) at the last glacial maximum. Available data from the tropical lowlands are sparse but suggest that the modern tropical rain forest was largely replaced by tropical seasonal forest while the modern seasonal or dry forests were encroached on by savanna or steppe. Montane forest elements descended to lower elevations than today.  相似文献   

5.
BIOME 6000 is an international project to map vegetation globally at mid‐Holocene (6000 14C yr bp ) and last glacial maximum (LGM, 18,000 14C yr bp ), with a view to evaluating coupled climate‐biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site‐based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present‐day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south‐western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial‐interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now‐arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land‐surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere‐biosphere models. The data could also be objectively generalized to yield realistic gridded land‐surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation‐climate feedbacks have focused on the hypothesized positive feedback effects of climate‐induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid‐Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.  相似文献   

6.
The objective biomization method developed by Prentice et al. (1996) for Europe was extended using modern pollen samples from Beringia and then applied to fossil pollen data to reconstruct palaeovegetation patterns at 6000 and 18,000 14C yr bp . The predicted modern distribution of tundra, taiga and cool conifer forests in Alaska and north‐western Canada generally corresponds well to actual vegetation patterns, although sites in regions characterized today by a mosaic of forest and tundra vegetation tend to be preferentially assigned to tundra. Siberian larch forests are delimited less well, probably due to the extreme under‐representation of Larix in pollen spectra. The biome distribution across Beringia at 6000 14C yr bp was broadly similar to today, with little change in the northern forest limit, except for a possible northward advance in the Mackenzie delta region. The western forest limit in Alaska was probably east of its modern position. At 18,000 14C yr bp the whole of Beringia was covered by tundra. However, the importance of the various plant functional types varied from site to site, supporting the idea that the vegetation cover was a mosaic of different tundra types.  相似文献   

7.
Pollen and plant macrofossil data from northern Eurasia were used to reconstruct the vegetation of the last glacial maximum (LGM: 18,000 ± 2000 14C yr bp ) using an objective quantitative method for interpreting pollen data in terms of the biomes they represent ( Prentice et al., 1996 ). The results confirm previous qualitative vegetation reconstructions at the LGM but provide a more comprehensive analysis of the data. Tundra dominated a large area of northern Eurasia (north of 57°N) to the west, south and east of the Scandinavian ice sheet at the LGM. Steppe‐like vegetation was reconstructed in the latitudinal band from western Ukraine, where temperate deciduous forests grow today, to western Siberia, where taiga and cold deciduous forests grow today. The reconstruction shows that steppe graded into tundra in Siberia, which is not the case today. Taiga grew on the northern coast of the Sea of Azov, about 1500 km south of its present limit in European Russia. In contrast, taiga was reconstructed only slightly south of its southern limit today in south‐western Siberia. Broadleaved trees were confined to small refuges, e.g. on the eastern coast of the Black Sea, where cool mixed forest was reconstructed from the LGM data. Cool conifer forests in western Georgia were reconstructed as growing more than 1000 m lower than they grow today. The few scattered sites with LGM data from the Tien‐Shan Mountains and from northern Mongolia yielded biome reconstructions of steppe and taiga, which are the biomes growing there today.  相似文献   

8.
Sensitivity of African biomes to changes in the precipitation regime   总被引:4,自引:0,他引:4  
Aim Africa is identified by the Inter‐governmental Panel on Climate Change (IPCC) as the least studied continent in terms of ecosystem dynamics and climate variability. The aim of this study was (1) to adapt the Lund‐Postdam‐Jena‐GUESS (LPJ‐GUESS) ecological modelling framework to Africa by providing new parameter values for tropical plant functional types (PFT), and (2) to assess the sensitivity of some African biomes to changes in precipitation regime. Location The study area was a representative transect (0–22° N and 7–18° E) through the transition from equatorial evergreen forests to savannas, steppes and desert northwards. The transect showed large latitudinal variation in precipitation (mean rainfall ranged from 50 to 2300 mm year?1). Methods New PFT parameters used to calibrate LPJ‐GUESS were based on modern pollen PFTs and remote sensed leaf area index (LAI). The model was validated using independent modern pollen assemblages, LAI and through comparison with White's modern potential vegetation map. Several scenarios were developed by combining changes in total rainfall amount with variation in the length of the dry season in order to test the sensitivity of African biomes. Results Simulated vegetation compared well to observed data at local and regional scales, in terms of ecosystem functioning (LAI), and composition (pollen and White's vegetation map). The assessment of the sensitivity of biomes to changes in precipitation showed that none of the ecosystems would shift towards a new type under the range of precipitation increases suggested by the IPCC (increases from 5 to 20%). However, deciduous and semi‐deciduous forests may be very sensitive to small reductions in both the amount and seasonality of precipitation. Main conclusions This version of LPJ‐GUESS parameterized for Africa simulated correctly the vegetation present over a wide precipitation gradient. The biome sensitivity assessment showed that, compared with savannas and grasslands, closed canopy forests may be more sensitive to change in precipitation regime due to the synergetic effects of changed rainfall amounts and seasonality on vegetation functioning.  相似文献   

9.
Biomization provides an objective and robust method of assigning pollen spectra to biomes so that pollen data can be mapped and compared directly with the output of biomgeographic models. We have tested the applicability of this procedure, originally developed for Europe, to assign modern surface samples from China to biomes. The procedure successfully delineated the major vegetation types of China. When the same procedure was applied to fossil pollen samples for 6000 years ago, the reconstructions showed systematic differences from present, consistent with previous interpretations of vegetation changes since the mid-Holocene. In eastern China, the forest zones were systematically shifted northwards, such that cool mixed forests displaced taiga in northeastern China, while broad-leaved evergreen forest extended c. 300 km and temperate deciduous forestc. 500–600 km beyond their present northern limits. In northwestern China, the area of desert and steppe vegetation was reduced compared to present. On the Tibetan Plateau, forest vegetation extended to higher elevations than today and the area of tundra was reduced. These shifts in biome distributions imply significant changes in climate since 6000 years ago that can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Asian monsoon.  相似文献   

10.
  • 1 A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM).
  • 2 Glacial/early Holocene (26–10 14C kyr bp or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south‐eastern California/south‐western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ~4.0 14C kyr bp . Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr bp . Hexaploids appeared by 8.5 14C kyr bp in the lower Colorado River Basin, reaching their northernmost limits (~37°N) in the Mohave Desert between 5.6 and 3.9 14C kyr bp .
  • 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations.
  • 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture.
  相似文献   

11.
Holocene climatic changes along coastal regions from south-east France to south-east Spain were studied using pollen ratios. Comparing modern pollen rain, vegetation and climate along selected transects from the Atlantic Ocean to the Mediterranean, we obtained threshold values of two different ratios corresponding to the different climatic conditions along the transects. These pollen ratios and threshold values were employed to characterize the Holocene climatic changes from nine Mediterranean coastal sites. The results were compared with data from marine and continental pollen sequences distributed in the western Mediterranean basin, and with additional regional data independent of human activity: lake-level fluctuations, alpine glacier advance and retreat chronology, 14C anomaly and cooling phases in Eastern France and Central Europe. The role of anthropogenic activities and climate on the changes in vegetation is discussed. Six major changes in vegetation cover were identified. They correspond to aridification phases that occurred around 9500–9000 yr BP (10 900–9700 cal BP), 7500–7000 yr BP (8400–7600 cal BP), 4500–4000 yr BP (5300–4200 cal BP), 3700–3300 yr BP (4300–3400 cal BP), 2600–1900 yr BP (2850–1730 cal BP) and 1300–1000 yr BP (1300–750 cal BP). These arid episodes were regional responses to more global climatic changes and determined the changes in the vegetation cover. Humans undoubtedly enhanced the vegetation changes, but none the less had to adapt to these new climatic conditions.  相似文献   

12.
The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest‐steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha?1, which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha?1) and total belowground carbon density (149 Mg C ha?1) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha?1, compared with 215 Mg C ha?1 in the forest interior. Carbon stock density in grasslands was 144 Mg C ha?1. Analysis of satellite imagery of the highly fragmented forest area in the forest‐steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km2, and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5?1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming.  相似文献   

13.
Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 106 ha and 38.6 Mg C ha?1 in the 1970s to 196.65 × 106 ha and 45.5 Mg C ha?1 in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr?1. Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr?1, equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil‐fuel CO2 emissions.  相似文献   

14.
Holocene carbon burial by lakes in SW Greenland   总被引:3,自引:0,他引:3  
The role of the Arctic in future global change processes is predicted to be important because of the large carbon (C) stocks contained in frozen soils and peatlands. Lakes are an important component of arctic landscapes although their role in storing C is not well prescribed. The area around Kangerlussuaq, SW Greenland (66–68°N, 49–54°W) has extremely high lake density, with ∼20 000 lakes that cover about 14% of the land area. C accumulation rates and standing stock (kg C m−2), representing late- to mid-Holocene C burial, were calculated from AMS 14C-dated sediment cores from 11 lakes. Lake ages range from ∼10 000 cal yr  bp to ∼5400 cal yr  bp , and reflect the withdrawal of the ice sheet from west to east. Total standing stock of C accumulated in the studied lakes for the last ∼8000 years ranged from 28 to 71 kg C m−2, (mean: ∼42 kg C m−2). These standing stock determinations yield organic C accumulation rates of 3.5–11.5 g C m−2 yr−1 (mean: ∼6 g C m−2 yr−1) for the last 4500 years. Mean C accumulation rates are not different for the periods 8–4.5 and 4.5–0 ka, despite cooling trends associated with the neoglacial period after 4.5 ka. We used the mean C standing stock to estimate the total C pool in small lakes (<100 ha) of the Kangerlussuaq region to be ∼4.9 × 1013 g C. This C stock is about half of that estimated for the soil pool in this region (but in 5% of the land area) and indicates the importance of incorporating lakes into models of regional C balance at high latitudes.  相似文献   

15.
BIOME6000计划:重古生物群区的最新进展   总被引:8,自引:1,他引:7  
倪健 《应用生态学报》2000,11(3):465-471
描述地球系统过去状态的数据,比如特殊时间段(全新世中期6000aBP和末次盛冰期18000aBP)的孢粉入植物大化石记录,一 全球变化研究所需要的,以往对这些三生态数据的利用大都是零散的、定点的,植被的重建往往也是定性的描述,而国际地圈-生物圈计划(IGBP)的国际协作项目BIOME6000(全球古植被制图计划)的创立,为古生态数据的综合与定量研究开辟的新的途径。该项目特别强调利用古生态学记录模拟  相似文献   

16.
Analysis of growth and biomass turnover in natural forests of Eucalyptus regnans, the world's tallest angiosperm, reveals it is also the world's most productive forest type, with fire disturbance an important mediator of net primary productivity (NPP). A comprehensive empirical database was used to calculate the averaged temporal pattern of NPP from regeneration to 250 years age. NPP peaks at 23.1 ± 3.8 (95% interquantile range) Mg C ha?1 year?1 at age 14 years, and declines gradually to about 9.2 ± 0.8 Mg C ha?1 year?1 at 130 years, with an average NPP over 250 years of 11.4 ± 1.1 Mg C ha?1 year?1, a value similar to the most productive temperate and tropical forests around the world. We then applied the age‐class distribution of E. regnans resulting from relatively recent historical fires to estimate current NPP for the forest estate. Values of NPP were 40% higher (13 Mg C ha?1 year?1) than if forests were assumed to be at maturity (9.2 Mg C ha?1 year?1). The empirically derived NPP time series for the E. regnans estate was then compared against predictions from 21 global circulation models, showing that none of them had the capacity to simulate a post‐disturbance peak in NPP, as found in E. regnans. The potential importance of disturbance impacts on NPP was further tested by applying a similar approach to the temperate forests of conterminous United States and of China. Allowing for the effects of disturbance, NPP summed across both regions was on average 11% (or 194 Tg C/year) greater than if all forests were assumed to be in a mature state. The results illustrate the importance of accounting for past disturbance history and growth stage when estimating forest primary productivity, with implications for carbon balance modelling at local to global scales.  相似文献   

17.
Biome reconstruction from pollen and plant macrofossil data provides an objective method to reconstruct past vegetation. Biomes for Africa and the Arabian peninsula have been mapped for 6000 years bp and provide a new standard for the evaluation of simulated palaeovegetation distributions. A test using modern pollen data shows the robustness of the biomization method, which is able to predict the major vegetation types with a high confidence level. The application of the procedure to the 6000 years data set (pollen and plant macrofossil analyses) shows systematic differences from the present that are consistent with the numerous previous regional and continental interpretations, while providing a more extensive and more objective basis for such interpretations. Madagascar, eastern, southern and central Africa show only minor changes in terms of biomes, compared to present. Major changes in biome distributions occur north of 15°N, with steppe in many low-elevation sites that are now desert, and temperate xerophytic woods/scrub and warm mixed forest in the Saharan mountains. These shifts in biome distributions imply significant changes in climate, especially precipitation, between 6000 years and present, reflecting a change in monsoon extent combined with a southward expansion of Mediterranean influence.  相似文献   

18.
Aim This paper documents reconstructions of the vegetation patterns in Australia, Southeast Asia and the Pacific (SEAPAC region) in the mid‐Holocene and at the last glacial maximum (LGM). Methods Vegetation patterns were reconstructed from pollen data using an objective biomization scheme based on plant functional types. The biomization scheme was first tested using 535 modern pollen samples from 377 sites, and then applied unchanged to fossil pollen samples dating to 6000 ± 500 or 18,000 ± 1000 14C yr bp . Results 1. Tests using surface pollen sample sites showed that the biomization scheme is capable of reproducing the modern broad‐scale patterns of vegetation distribution. The north–south gradient in temperature, reflected in transitions from cool evergreen needleleaf forest in the extreme south through temperate rain forest or wet sclerophyll forest (WSFW) and into tropical forests, is well reconstructed. The transitions from xerophytic through sclerophyll woodlands and open forests to closed‐canopy forests, which reflect the gradient in plant available moisture from the continental interior towards the coast, are reconstructed with less geographical precision but nevertheless the broad‐scale pattern emerges. 2. Differences between the modern and mid‐Holocene vegetation patterns in mainland Australia are comparatively small and reflect changes in moisture availability rather than temperature. In south‐eastern Australia some sites show a shift towards more moisture‐stressed vegetation in the mid‐Holocene with xerophytic woods/scrub and temperate sclerophyll woodland and shrubland at sites characterized today by WSFW or warm‐temperate rain forest (WTRF). However, sites in the Snowy Mountains, on the Southern Tablelands and east of the Great Dividing Range have more moisture‐demanding vegetation in the mid‐Holocene than today. South‐western Australia was slightly drier than today. The single site in north‐western Australia also shows conditions drier than today in the mid‐Holocene. Changes in the tropics are also comparatively small, but the presence of WTRF and tropical deciduous broadleaf forest and woodland in the mid‐Holocene, in sites occupied today by cool‐temperate rain forest, indicate warmer conditions. 3. Expansion of xerophytic vegetation in the south and tropical deciduous broadleaf forest and woodland in the north indicate drier conditions across mainland Australia at the LGM. None of these changes are informative about the degree of cooling. However the evidence from the tropics, showing lowering of the treeline and forest belts, indicates that conditions were between 1 and 9 °C (depending on elevation) colder. The encroachment of tropical deciduous broadleaf forest and woodland into lowland evergreen broadleaf forest implies greater aridity. Main conclusions This study provides the first continental‐scale reconstruction of mid‐Holocene and LGM vegetation patterns from Australia, Southeast Asia and the Pacific (SEAPAC region) using an objective biomization scheme. These data will provide a benchmark for evaluation of palaeoclimate simulations within the framework of the Palaeoclimate Modelling Intercomparison Project.  相似文献   

19.
Fossil pollen data supplemented by tree macrofossil records were used to reconstruct the vegetation of the Former Soviet Union and Mongolia at 6000 years. Pollen spectra were assigned to biomes using the plant-functional-type method developed by Prentice et al . (1996). Surface pollen data and a modern vegetation map provided a test of the method. This is the first time such a broad-scale vegetation reconstruction for the greater part of northern Eurasia has been attempted with objective techniques. The new results confirm previous regional palaeoenvironmental studies of the mid-Holocene while providing a comprehensive synopsis and firmer conclusions. West of the Ural Mountains temperate deciduous forest extended both northward and southward from its modern range. The northern limits of cool mixed and cool conifer forests were also further north than present. Taiga was reduced in European Russia, but was extended into Yakutia where now there is cold deciduous forest. The northern limit of taiga was extended (as shown by increased Picea pollen percentages, and by tree macrofossil records north of the present-day forest limit) but tundra was still present in north-eastern Siberia. The boundary between forest and steppe in the continental interior did not shift substantially, and dry conditions similar to present existed in western Mongolia and north of the Aral Sea.  相似文献   

20.
European forests are an important carbon sink; however, the relative contributions to this sink of climate, atmospheric CO2 concentration ([CO2]), nitrogen deposition and forest management are under debate. We attributed the European carbon sink in forests using ORCHIDEE‐FM, a process‐based vegetation model that differs from earlier versions of ORCHIDEE by its explicit representation of stand growth and idealized forest management. The model was applied on a grid across Europe to simulate changes in the net ecosystem productivity (NEP) of forests with and without changes in climate, [CO2] and age structure, the three drivers represented in ORCHIDEE‐FM. The model simulates carbon stocks and volume increment that are comparable – root mean square error of 2 m3 ha?1 yr?1 and 1.7 kg C m?2 respectively – with inventory‐derived estimates at country level for 20 European countries. Our simulations estimate a mean European forest NEP of 175 ± 52 g C m?2 yr?1 in the 1990s. The model simulation that is most consistent with inventory records provides an upwards trend of forest NEP of 1 ± 0.5 g C m?2 yr?2 between 1950 and 2000 across the EU 25. Furthermore, the method used for reconstructing past age structure was found to dominate its contribution to temporal trends in NEP. The potentially large fertilizing effect of nitrogen deposition cannot be told apart, as the model does not explicitly simulate the nitrogen cycle. Among the three drivers that were considered in this study, the fertilizing effect of increasing [CO2] explains about 61% of the simulated trend, against 26% to changes in climate and 13% only to changes in forest age structure. The major role of [CO2] at the continental scale is due to its homogeneous impact on net primary productivity (NPP). At the local scale, however, changes in climate and forest age structure often dominate trends in NEP by affecting NPP and heterotrophic respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号