首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amino acid residue peptide, alpha-inhibin-92 (alpha-IB-92), has been synthesized by the thiocarboxyl segment strategy. Three segments were synthesized by the solid phase method, purified, and characterized: [GlyS34]-alpha-IB-92-(1-34) (I), CF3CO-[GlyS65]-alpha-IB-92-(35-65) (II), and Msc-alpha-IB-92-(66-92) (III). All were reacted with citraconic anhydride followed by removal of the Msc group in III to give Ia, IIa, and IIIa, respectively. Peptide IIIa was coupled to IIa by the silver nitrate/N-hydroxysuccinimide procedure and, after removal of uncoupled segments and the trifluoroacetyl group, Ia was coupled followed again by removal of uncoupled segments. Final deblocking to remove citraconyl groups was accomplished under exceptionally mild conditions in aqueous acetic acid. The synthetic product was identical to natural alpha-IB-92 in amino acid analysis, HPLC, gel electrophoresis, and tryptic mapping. The synthetic peptide was indistinguishable from natural alpha-IB-92 in a radioimmunoassay and in an in vitro mouse pituitary assay for measuring suppression of FSH release in the presence of LHRH.  相似文献   

2.
Studies on the mechanism of the glutathione regeneration (Saxena, V.P., and Wetlaufer, D.B. (1970) Biochemistry 9, 5015-5023) of hen egg lysozyme have been carried out. The first two stoichiometric disulfides in lysozyme are formed about 8 times more rapidly than the second two. Almost no enzymic activity is regained until the first two disulfides are formed, thus ruling out an all-or-none mechanism. The disulfide peptides formed early in the regeneration have been isolated and identified. The results show a limited search of folding intermediates, and outline a folding pathway. The early disulfides involve cysteinyl residues III, IV, V, and VI. At the same time cysteinyl residues I, II, VII, and VIII are still reduced, as demonstrated by their isolation as S-alkylated derivatives. At slightly later times a peptide is found which contains the (native) disulfide between cysteinyl residues II and VII. It is likely, but as yet unproven, that formation of disulfide I-VIII completes the cross-linking of lysozyme.  相似文献   

3.
The disulfide content of calf gamma-crystallin   总被引:5,自引:0,他引:5  
The disulfide content of calf gamma-crystallin polypeptides has been investigated. The gamma-crystallin fraction of the soluble lens proteins was separated into five distinct polypeptides and characterized by isoelectric focusing, amino acid composition, and N-terminal sequence analysis to 25 residues. It has been demonstrated that 7 cysteines are present in gamma II, 4 to 5 cysteines in gamma IIIa, gamma IIIb, and gamma IV, and 6 cysteines in gamma I (beta s). Reduction of the total gamma-crystallin fraction with DTT resulted in an increase of approximately 1 to 1.5 mol of free SH per mole of protein. This increase in sulfhydryls was demonstrated to be contributed primarily by gamma II, the major polypeptide representing 50% of the total gamma-crystallin, which showed an increase of approximately 2.5 mol of sulfhydryl per mole of protein upon reduction. Insignificant disulfide content was present in gamma III and gamma IV and only a slight amount of disulfide was found in gamma I (beta s). The observed increase in sulfhydryl content upon reduction was not due to the presence of mixed disulfides of 2-mercaptoethanol, glutathione, or cysteine. The data are consistent with approximately 1 mol of intramolecular disulfide per mole of protein being present in gamma II. X-ray crystallography of gamma II has shown that the spatial location of Cys18 and Cys22 in the tertiary structure permits disulfide bond formation. Sequence analysis of the four major polypeptides of gamma-crystallin, gamma II, gamma IIIa, gamma IIIb, and gamma IV indicates that only gamma II has both Cys18 and Cys22. Cys18 is present in gamma IIIa, gamma IIIb, and gamma IV but Cys22 is replaced by His22. It is probable that the lack of disulfide in gamma IIIa, gamma IIIb, and gamma IV is due to the absence of Cys22.  相似文献   

4.
In erythrocytes treated with the SH-oxidizing agent, diamide, mixed disulfide bonds between membrane proteins and GSH are formed involving 20% of the membrane SH groups. To study the distribution of these mixed disulfides over the membrane protein fractions, intracellular GSH was labelled biosynthetically with [2-3H]glycine prior to diamide treatment of the cells and the radioactivity of defined membrane peptide fractions determined. Mixed disulfides preferentially occur in the extrinsic protein, spectrin (six SH groups), in addition to the formation of peptide disulfides. Intrinsic proteins are much less reactive: only one SH group of the major intrinsic protein (band 3) reacts with GSH, which accounts for previously observed impossibility to dimerize band 3 via disulfide bonds in intact cells. The labelling method described offers a promising strategy to label and map exposed endofacial SH groups of membrane proteins with a physiological, impermeable marker, GSH.In ghosts treated with diamide and GSH the number of mixed disulfides formed is greater than in erythrocytes. Polymerization of spectrin via intermolecular disulfide bridges is suppressed, while intramolecular disulfides are still formed, providing a means for the analysis of spectrin structure.The diamide-induced mixed membrane-GSH disulfides are readily reduced by GSH. This suggests, that GSH may also be able to reduce mixed disulfides formed in the erythrocyte membrane under oxidative stress in vivo. The reversible formation of mixed disulfides may serve to protect sensitive membrane structures against irreversible oxidative damage.  相似文献   

5.
Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSH<-->Alb-SS-R+XSH) or dethiolation (Alb-SS-X+XSH<-->Alb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.  相似文献   

6.
The retention of polyhedral borane anions within tumor cells has been attributed to the possible formation of covalent bonds with nucleophilic protein substituents. In an effort to identify the nature of possible interactions between polyhedral borane anions and proteins, three polyhedral borane anions, [B(20)H(18)](2-), [B(20)H(17)OH](4-), and [B(20)H(17)SH](4-), were allowed to react with either bovine or human serum albumin. Reaction products were analyzed with matrix assisted laser desorption ionization (MALDI) mass spectrometry and gel electrophoresis. Evidence of disulfide bond formation was observed with the [B(20)H(17)SH](4-) anion, whereas no evidence of covalent binding was observed with the [B(20)H(18)](2-) and [B(20)H(17)OH](4-) ions. The potential for disulfide bond formation was confirmed by examining the reactions of the [B(20)H(17)SH](4-) ion with both DTNB and reduced glutathione. An understanding of the nature of the binding will provide a basis for the design and synthesis of boron-containing compounds for application in boron neutron capture therapy.  相似文献   

7.
Five serine proteinase inhibitors (Mirabilis jalapa trypsin inhibitors, MJTI I and II and Spinacia oleracea trypsin inhibitors, SOTI I, II, and III) from the garden four-o'clock (M. jalapa) and spinach (S. oleracea) seeds were isolated. The purification procedures included affinity chromatography on immobilized methylchymotrypsin in the presence of 5M NaCl, ion exchange chromatography and/or preparative electrophoresis, and finally RP-HPLC on a C-18 column. The inhibitors, crosslinked by three disulfide bridges, are built of 35 to 37 amino-acid residues. Their primary structures differ from those of known trypsin inhibitors, but showed significant similarity to the antimicrobial peptides isolated from the seeds of M. jalapa (MJ-AMP1, MJ-AMP2), Mesembryanthemum crystallinum (AMP1), and Phytolacca americana (AMP-2 and PAFP-S) and from the hemolymph of Acrocinus longimanus (Alo-1, 2 and 3). The association equilibrium constants (K(a)) with bovine beta-trypsin for the inhibitors from M. jalapa (MJTI I and II) and S. oleracea (SOTI I-III) were found to be about 10(7)M(-1). Fully active MJTI I and SOTI I were obtained by solid-phase peptide synthesis. The disulfide bridge pattern in both inhibitors (Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6) was established after their digestion with thermolysin and proteinase K followed by the MALDI-TOF analysis.  相似文献   

8.
Various strategies for the use of 3-(N-maleimido-propionyl) biocytin (MPB) as a general label for distinguishing between protein sulfhydryls and disulfides on blot transfers are presented. In the first approach, endogenous SH groups in proteins were labeled directly with MPB. For disulfide staining, endogenous sulfhydryls were blocked with N-ethylmaleimide, disulfides were then reduced with mercaptoethanol, and the newly formed SH groups were labeled with MPB. In this approach, all treatments were performed in vitro, and, between steps, excess reagent was removed by dialysis. The MPB-labeled proteins were then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (in the presence of mercaptoethanol), the labeled proteins were transferred to nitrocellulose, and the blotted proteins were detected by avidin-biotin technology. In the second approach, MPB treatment was performed directly on blot transfers. For SH labeling, proteins were subjected to SDS-PAGE in the absence of mercaptoethanol, thus retaining the status of endogenous sulfhydryl and disulfide groups. For S-S labeling, proteins were treated with N-ethylmaleimide in vitro and then subjected to SDS-PAGE in the presence of mercaptoethanol, such that endogenous sulfhydryls were blocked and endogenous disulfides were converted to SH groups. Subsequent treatments and washings were performed on blots. In the third approach, immobilized proteins (i.e., in artificial systems or in natural systems such as membrane preparations or intact cells) were treated essentially as described in the first approach, except that washings were carried out by centrifugation. In vitro treatments were performed before SDS-PAGE (carried out in the presence of mercaptoethanol) and subsequent blot transfer. The relative merits of the three strategies are discussed.  相似文献   

9.
Using DTT(red) as the reducing agent, the kinetics of the reductive unfolding of onconase, a frog ribonuclease, has been examined. An intermediate containing three disulfides, Ir, that is formed rapidly in the reductive pathway, is more resistant to further reduction than the parent molecule, indicating that the remaining disulfides in onconase are less accessible to DTT(red). Disulfide-bond mapping of Ir indicated that it is a single species lacking the (30-75) disulfide bond. The reductive unfolding pattern of onconase is consistent with an analysis of the exposed surface area of the cysteine sulfur atoms in the (30-75) disulfide bond, which reveals that these atoms are about four- and sevenfold, respectively, more exposed than those in the next two maximally exposed disulfides. By contrast, in the reductive unfolding of the homologue, RNase A, there are two intermediates, arising from the reduction of the (40-95) and (65-72) disulfide bonds, which takes place in parallel, and on a much longer time-scale, compared to the initial reduction of onconase; this behavior is consistent with the almost equally exposed surface areas of the cysteine sulfur atoms that form the (40-95) and (65-72) disulfide bonds in RNase A and the fourfold more exposed cysteine sulfur atoms of the (30-75) disulfide bond in onconase. Analysis and in silico mutation of the residues around the (40-95) disulfide bond in RNase A, which is analogous to the (30-75) disulfide bond of onconase, reveal that the side-chain of tyrosine 92 of RNase A, a highly conserved residue among mammalian pancreatic ribonucleases, lies atop the (40-95) disulfide bond, resulting in a shielding of the corresponding sulfur atoms from the solvent; such burial of the (30-75) sulfur atoms is absent from onconase, due to the replacement of Tyr92 by Arg73, which is situated away from the (30-75) disulfide bond and into the solvent, resulting in the large exposed surface-area of the cysteine sulfur atoms forming this bond. Removal of Tyr92 from RNase A resulted in the relatively rapid reduction of the mutant to form a single intermediate (des [40-95] Y92A), i.e. it resulted in an onconase-like reductive unfolding behavior. The reduction of the P93A mutant of RNase A proceeds through a single intermediate, the des [40-95] P93A species, as in onconase. Although mutation of Pro93 to Ala does not increase the exposed surface area of the (40-95) cysteine sulfur atoms, structural analysis of the mutant reveals that there is greater flexibility in the (40-95) disulfide bond compared to the (65-72) disulfide bond that may make the (40-95) disulfide bond much easier to expose, consistent with the reductive unfolding pathway and kinetics of P93A. Mutation of Tyr92 to Phe92 in RNase A has no effect on its reductive unfolding pathway, suggesting that the hydrogen bond between the hydroxyl group of Tyr92 and the carbonyl group of Lys37 has no impact on the local unfolding free energy required to expose the (40-95) disulfide bond. Thus, these data shed light on the differences between the reductive unfolding pathways of the two homologous proteins and provide a structural basis for the origin of this difference.  相似文献   

10.
The oxidase DsbA folds a protein with a nonconsecutive disulfide   总被引:3,自引:0,他引:3  
One of the last unsolved problems of molecular biology is how the sequential amino acid information leads to a functional protein. Correct disulfide formation within a protein is hereby essential. We present periplasmic ribonuclease I (RNase I) from Escherichia coli as a new endogenous substrate for the study of oxidative protein folding. One of its four disulfides is between nonconsecutive cysteines. In general view, the folding of proteins with nonconsecutive disulfides requires the protein disulfide isomerase DsbC. In contrast, our study with RNase I shows that DsbA is a sufficient catalyst for correct disulfide formation in vivo and in vitro. DsbA is therefore more specific than generally assumed. Further, we show that the redox potential of the periplasm depends on the presence of glutathione and the Dsb proteins to maintain it at-165 mV. We determined the influence of this redox potential on the folding of RNase I. Under the more oxidizing conditions of dsb(-) strains, DsbC becomes necessary to correct non-native disulfides, but it cannot substitute for DsbA. Altogether, DsbA folds a protein with a nonconsecutive disulfide as long as no incorrect disulfides are formed.  相似文献   

11.
This study describes the antibacterial properties of synthetically produced mixed aryl-alkyl disulfide compounds as a means to control the growth of Staphylococcus aureus and Bacillus anthracis. Some of these compounds exerted strong in vitro bioactivity. Our results indicate that among the 12 different aryl substituents examined, nitrophenyl derivatives provide the strongest antibiotic activities. This may be the result of electronic activation of the arylthio moiety as a leaving group for nucleophilic attack on the disulfide bond. Small alkyl residues on the other sulfur provide the best activity as well, which for different bacteria appears to be somewhat dependent on the nature of the alkyl moiety. The mechanism of action of these lipophilic disulfides is likely similar to that of previously reported N-thiolated beta-lactams, which have been shown to produce alkyl-CoA disulfides through a thiol-disulfide exchange within the cytoplasm, ultimately inhibiting type II fatty acid synthesis. However, the mixed alkyl-CoA disulfides themselves show no antibacterial activity, presumably due to the inability of the highly polar compounds to cross the bacterial cell membrane. These structurally simple disulfides have been found to inhibit beta-ketoacyl-acyl carrier protein synthase III, or FabH, a key enzyme in type II fatty acid biosynthesis, and thus may serve as new leads to the development of effective antibacterials for MRSA and anthrax infections.  相似文献   

12.
We have demonstrated that calf liver protein disulfide-isomerase (Mr 57,000) is a substrate for calf thymus thioredoxin reductase and catalyzes NADPH-dependent insulin disulfide reduction. This reaction can be used as a simple assay for protein disulfide-isomerase during purification in place of the classical method of reactivation of incorrectly oxidized ribonuclease A. Protein disulfide-isomerase contains two redox-active disulfides/molecule which were reduced by NADPH and calf thioredoxin reductase (Km approximately 35 microM). The isomerase was a poor substrate for NADPH and Escherichia coli thioredoxin reductase, but the addition of E. coli thioredoxin resulted in rapid reduction of two disulfides/molecule. Tryptophan fluorescence spectra were shown to monitor the redox state of protein disulfide-isomerase. Fluorescence measurements demonstrated that thioredoxin--(SH)2 reduced the disulfides of the isomerase and allowed the kinetics of the reaction to be followed; the reaction was also catalyzed by calf thioredoxin reductase. Equilibrium measurements showed that the apparent redox potential of the active site disulfide/dithiols of the thioredoxin domains of protein disulfide-isomerase was about 30 mV higher than the disulfide/dithiol of E. coli thioredoxin. Consistent with this, experiments using dithiothreitol or NADPH and thioredoxin reductase-dependent reduction and precipitation of insulin demonstrated differences between protein disulfide-isomerase and thioredoxin, thioredoxin being a better disulfide reductase but less efficient isomerase. Protein disulfide-isomerase is thus a high molecular weight member of the thioredoxin system, able to interact with both mammalian NADPH-thioredoxin reductase and reduced thioredoxin. This may be important for nascent protein disulfide formation and other thiol-dependent redox reactions in cells.  相似文献   

13.
Synthesis of type I and III collagens has been examined in MG-63 human osteosarcoma cells after treatment with the steroid hormone, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Analysis of total [3H]proline-labeled proteins and pepsin-derived collagens revealed that 1,25-(OH)2D3 selectively stimulated synthesis of alpha 1I and alpha 2I components of type I collagen after 6-12 h. Consistent with previous reports (Franceschi, R. T., Linson, C. J., Peter, T. C., and Romano, P. R. (1987) J. Biol. Chem. 262, 4165-4171), parallel increases in fibronectin synthesis were also observed. Hormonal effects were maximal (2- to 2.5-fold versus controls) after 24 h and persisted for at least 48 h. In contrast, synthesis of the alpha 1III component of type III collagen was not appreciably affected by hormone treatment. Of several vitamin D metabolites (1,25-(OH)2D3, 25-dihydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) tested for activity in stimulating type I collagen synthesis, 1,25-(OH)2D3 was found to be the most active. Analysis of collagen mRNA abundance by Northern blot hybridization indicated that both types I and III procollagen mRNAs were increased 4-fold after a 24-h exposure to 1,25-(OH)2D3. Pro alpha 1I mRNA remained elevated through the 48-h time point while pro alpha 2I and pro alpha 1III mRNAs returned to control values. These results indicate that the regulation of collagen synthesis by 1,25-(OH)2D3 is complex and may involve changes in translational efficiency as well as mRNA abundance. 1,25-(OH)2D3 also caused at least a 20-fold increase in levels of the bone-specific calcium-binding protein, osteocalcin. These results are consistent with the hypothesis that 1,25-(OH)2D3 is stimulating partial differentiation to the osteoblast phenotype in MG-63 cells.  相似文献   

14.
Subunit structure and dynamics of the insulin receptor   总被引:3,自引:0,他引:3  
A model for the minimum subunit composition and stiochiometry of the physiologically relevant insulin receptor has been deduced based on results obtained by affinity labeling of this receptor in a variety of cell types and species. We propose that the receptor is a symmetrical disulfide-linked heterotetramer composed of two alpha (apparent Mr = 125,000) and two beta (apparent Mr = 90,000) glycoprotein subunits in the configuration (beta-S-S-alpha)-S-S-(alpha-S-S-beta). The disulfide or disulfides linking the two (alpha-S-S-beta) halves (class I disulfides) exhibit greater sensitivity to reduction by exogenous reductants than those linking the alpha and beta subunits (class II disulfides). When the class I disulfides are reduced by addition of diothiothreitol to intact cells, the receptor retains its ability to bind insulin and to effect a biological response. The beta subunit contains a site at about the center of its amino acid sequence that is extremely sensitive to proteolytic cleavage by elastaselike proteases, yielding a beta 1 fragment (Mr = 45,000) that remains disulfide linked to the receptor complex and a free beta 2 fragment. Binding of insulin to the receptor complex appears to result in the formation or stabilization of a new receptor conformation as evidenced by an altered susceptibility of the alpha subunit to exogenous trypsin. A receptor structure with high affinity for insulinlike growth factor (IGF) I and low affinity for insulin in fibroblast and placental membranes has also been affinity labeled. It exhibits the same structural features found for the insulin receptor, including two classes of disulfide bridges and beta subunits highly sensitive to proteolytic cleavage. These recent observations identifying the presence of distinct insulin and IGF-I receptors that share similar complex structures suggest that these hormones may also share common mechanisms of transmembrane signaling.  相似文献   

15.
In order to clarify the role of free fatty acid (FFA) in thyroid hormone abnormalities in patients with nonthyroidal illness, thyroid function, FFA, inhibitor of extrathyroidal conversion of T4 to T3 (IEC) and thyroid hormone binding inhibitor (THBI) were studied in 99 patients with various nonthyroidal illnesses including diabetes mellitus (DM) (n = 35), liver cirrhosis (LC) (n = 33), chronic obstructive pulmonary disease (COPD) (n = 17) and chronic heart failure (CHF) (n = 14). Patients were divided into three groups based on the level of serum T3: Group I (T3 < 50 ng/dl), Group II (50 < or = T3 < 80) and Group III (80 < or = T3). Serum T4, FT3 and the T3/T4 ratio decreased significantly in the order Group III, Group II and Group I (Group III > II > I). The plasma FFA level was 0.91 +/- 0.12 mmol/l in Group I (P < 0.05, vs. Group III), 0.65 +/- 0.06 in Group II and 0.54 +/- 0.04 in Group III, respectively. The incidence of positive IEC was 80.0% in Group I (P < 0.05, vs. Group III), 53.7% in Group II (P < 0.05, vs. Group III) and 34.2% in Group III. However, IEC was not correlated with the serum T3 concentration. The incidence of positive THBI was 80% in Group I (P < 0.05, vs. Group III), 68.3% in Group II and 47.4% in Group III, but THBI was not correlated with the serum T4 level. Positive correlations were observed among FFA, IEC and THBI (P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study was conducted to follow the chronology of pronuclear formation in bovine zygotes after in vitro insemination with a population of spermatozoa having abnormal morphology. Semen samples were obtained and cryopreserved from four Holstein bulls before and after a scrotal insulation period of 48 h (Day 0). A pre-insult (Day 5) and a Day 20 post-insult semen sample were evaluated for morphology and used for IVF after standard swim-up sperm separation protocols. Pronuclear formation was scored on subpopulations of presumptive zygotes after they were fixed and stained at 3-h time intervals from 6 to 18 h post in vitro insemination (hpi). Post-thaw morphological evaluation of semen samples revealed a decrease in the percentages of normal spermatozoa in the post-insult samples compared with the pre-insult samples for Bull I (74-22%) and Bull III (68-1%). The sperm penetration rate decreased (P<0.05) between the pre- and post-insult samples for Bulls I (90-76%) and III (92-70%), but was not different for Bulls II (92-90%) and IV (78-85%). The pronuclear formation rates for post-insult zygotes for Bulls II and IV had comparable increases in development over time, whereas there was no increase in the pronuclear development for the zygotes from the post-insult samples for Bulls I and III, and generally a condensed sperm head was observed in the oolemma. At 18 hpi the fertilization rate between the pre- and post-insult samples for Bulls I (51-4%), II (88-75%) and III (94-2%) decreased (P<0.01), but there was no change for Bull IV (66%). In conclusion, we inferred that the failure in normal pronuclear formation was associated with an absence of normal decondensation of the penetrating spermatozoon; this suggested that the effect of morphologically abnormal spermatozoa occurred prior to cleavage, thus limiting early development.  相似文献   

17.
The vitamin D status of IDDs was studied in 3 groups of patients who were treated for several months with (i) conventional insulin therapy (group I, n = 17, HbA1 = 10.1 +/- 0.5%); (ii) continuous subcutaneous insulin infusion (CSII, group II, n = 11, HbA1 = 8.9 +/- 0.6%); and (iii) continuous intraperitoneal insulin infusion (CPII, group III, n = 13, HbA1 = 8.0 +/- 0.4%). In all patient groups the plasma concentration of vitamin D metabolites were within normal range. However plasma 25 OH D (ng/ml) was significantly lower in groups I (13.0 +/- 0.8, P less than 0.01) and II (12.5 +/- 1.5, P less than 0.02) than in group III: 22.1 +/- 2.3 (normal range 7-27). Plasma 24,25-(OH)2D (ng/ml) was positively correlated to plasma 25 OH D and was significantly decreased in groups I (1.5 +/- 0.2, P less than 0.05) and II (1.4 +/- 0.2, P less than 0.05) compared with group III: 2.3 +/- 0.3. No significant differences were found in plasma 1,25-(OH)2D between the three groups of diabetics. Plasma PTH was similar in the three groups. The same differences in plasma 25 OH D were observed between the patients treated with CPII and 15 subcutaneously treated patients matched for diabetic control (HbA1 less than 10 per cent). The present results seem to indicate that insulin might have a stimulatory effect on the hepatic 25 hydroxylase activity.  相似文献   

18.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates: two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient I was formed from P3A through thiol/disulfide exchange reaction; then, transients II and III, each containing two native disulfides, were formed through the recognition and interaction of transient I with P4B or P6B and the thiol group’s oxidation reaction mainly using GSSG as oxidative reagent; finally, transients II and III, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

19.
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.  相似文献   

20.
Zhang Q  Kelly JW 《Biochemistry》2005,44(25):9079-9085
The marked variation in clinical expression and age of familial amyloid disease onset is not well understood. One possibility is that metabolite modification(s) of a disease-associated mutant protein can change the energetics and propensity for misfolding, influencing the disease course. Each subunit of the transthyretin (TTR) tetramer has a single Cys residue that can exist in the SH form or as a mixed disulfide with the amino acid Cys or the peptide glutathione or fragments of the latter. The stability and amyloidogenicity of the clinically most important TTR variants (V30M and V122I) in their SH oxidation state were compared with those of their mixed disulfide adducts. All the Cys-10 mixed disulfide conjugates exhibited substantially decreased protein stability (urea, pH 7) and a higher rate and extent of amyloidogenesis (slightly acidic conditions). We also investigated the amyloidogenicity and stability of a C10S/V30M TTR double mutant which lacks the ability to make mixed disulfides, but retains the disease-associated V30M mutation. Unlike V30M TTR, this double mutant is nonamyloidogenic in transgenic mice. Our in vitro data reveal that the C10S/V30M and V30M TTR homotetramers have identical amyloidogenicity and stability, implying that Cys-10 mixed disulfide formation enhances amyloidogenesis in V30M transgenic mice. Given the high proportion of TTR subunits having mixed disulfide modifications in human plasma ( approximately 50%), and the data within demonstrating their increased amyloidogenicity, we submit that disulfide metabolite modifications have the potential to influence the course of amyloidoses, including TTR amyloidoses caused by mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号