首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A Warashina 《FEBS letters》1985,184(1):87-89
The average size of chromaffin granules isolated from bovine adrenal medullae was analyzed by a quasi-elastic laser light scattering method. The granule diameter increased by a factor of 1.3 by addition of Mg-ATP in the medium. The ATP effect was completely suppressed in the presence of an anion transport blocker (SITS), and partly depressed by a proton transport blocker (DCCD).  相似文献   

3.
4.
Tetanus toxin (about 1 nM) inhibits 70% of the nicotine-evoked release of catecholamines from intact adrenal medullary chromaffin cells after 20 h of incubation and 30% of the K(+)-evoked release. Inhibition of Ca(2+)-evoked release from detergent-permeabilized cells requires higher concentrations of toxin (about 1 microM) toxin, but is maximal after 12 min. Preincubation of the intact cells with ganglioside GT1 in the absence of toxin also inhibits evoked secretion. 125I-labelled toxin bound specifically to these cells; the binding capacity was greater at pH 6 (about 1 pmol toxin/mg cell protein) than at pH 7.4 (about 0.25 pmol). In both cases there were at least two binding components: one of high affinity (Kd about 1 nM) accounting for about 20% of total binding and one of lower affinity (Kd 10-20 nM). Preincubation of the cells with ganglioside increased the binding capacity, but did not affect the Kd of the lower affinity component. Similar observations could be made when binding was measured immunocytochemically. Extraction of gangliosides from chromaffin cells and overlay experiments with radiolabelled toxin showed that, as well as GM3, the major ganglioside component of chromaffin cell membranes, a ganglioside having the chromatographic mobility of GT1 was a major ligand for toxin.  相似文献   

5.
The effect of the transmembrane potential (delta psi) and the proton concentration gradient (delta pH) across the chromaffin granule membrane upon the rate and extent of catecholamine accumulation was studied in isolated bovine chromaffin granules. Freshly isolated chromaffin granules had an intragranular pH of 5.5 as measured by [14C]methylamine distribution. The addition of ATP to a suspension of granules resulted in the generation of a membrane potential, positive inside, as measured by [14C]thiocyanate (SCN-) distribution. The addition of carboxyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), a proton translocator, resulted in a reversal of the potential to negative values (measured by [3H]tetramethylphenylphosphonium (TPMP+)) approaching -90 mV. Changing the external pH of a granular suspension incubated with FCCP produced a linear perturbation in the measured potential from positive to negative values, which can be explained by the distribution of protons according to their electrochemical gradient. When ammonia (1 to 50 mM) was added to highly buffered suspensions of chromaffin granules there was a dose-dependent decrease in the transmembrane proton gradient (delta pH) and an increase in the membrane potential (delta psi). On the other hand, thiocyanate or FCCP, at varying concentration, produced a dose-related collapse of the membrane potential and had no effect upon the transmembrane proton gradient. The addition of larger concentrations of catecholamines caused a decrease in the transmembrane proton gradient and an increase in the membrane potential. Time-resolved influx of catecholamines into the granules was studied radiochemically using low external catecholamine concentrations. The accumulation of epinephrine or norepinephrine was over one order of magnitude greater in the presence of ATP than in its absence. The rate and extent of amine accumulation was found to be related to the magnitude of the membrane potential at fixed transmembrane proton concentration (delta pH) values. Likewise, the accumulation was related to the magnitude of the delta pH at fixed membrane potential values. These results suggest that the existence of both a transmembrane proton gradient and a membrane potential are required for optimal catecholamine accumulation to occur.  相似文献   

6.
Many non-muscle cells including chromaffin cells contain actin and myosin. The 20,000 dalton light chain subunits of myosin can be phosphorylated by a Ca2+/calmodulin-dependent enzyme, myosin light chain kinase. In tissues other than striated muscle, light chain phosphorylation is required for actin-induced myosin ATPase activity. The possibility that actin and myosin are involved in catecholamine secretion was investigated by determining whether increased phosphorylation in the presence of [-32P]ATP of myosin light chain by myosin light chain kinase enhances secretion from digitonin-treated chromaffin cells. In the absence of exogenous myosin light chain kinase, 1 M Ca2+ caused a 30–40% enhancement of the phosphorylation of a 20 kDa protein. This protein was identified on 2-dimensional gels as myosin light chain by its comigration with purified myosin light chain. Purified myosin light chain kinase (400 g/ml) in the presence of calmodulin (10 M) caused little or no enhancement of myosin light chain phosphorylation in the absence of Ca2+ in digitonin-treated cells. In the presence of 1 M Ca2+, myosin light chain kinase (400 g/ml) caused an approximately two-fold increase in myosin light chain phosphorylation in digitonin-treated cells in 5 min. The phosphorylation required permeabilization of the cells by digitonin and occurred within the cells rather than in the medium. Myosin light chain kinase-induced phosphorylation of myosin light chain was maximal at 1 M. Ca2+. Under identical conditions to those of the phosphorylation experiments, secretion was unaltered by myosin light chain kinase. The experiments indicate that the phosphorylation of myosin light chain by myosin light chain kinase is not a limiting factor in secretion in digitonin-treated chromaffin cells and suggest that the activation of myosin is not directly involved in secretion from the cells. The experiments also demonstrate the feasibility of investigation of effects of exogenously added proteins on secretion in digitonin-treated cells.Abbreviations EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - KGEPM solution containing potassium glutamate, EGTA, PIPES and MgCl2 - NE norepinephrine - PIPES piperazine-N,-N-bis-(2-ethanesulfonic acid) - PSS physiological salt solution  相似文献   

7.
The nonhydrolyzable GTP analogue guanosine 5'-(beta, gamma-imido)triphosphate (GMP-PNP) produced an ATP-dependent but Ca2+-independent stimulation of [3H]norepinephrine release from permeabilized chromaffin cells. This stimulation of secretion was 25-35% of the secretion induced by 10 microM Ca2+. A similar Ca2+-independent stimulation was produced by other non-hydrolyzable GTP analogues. No effect was seen with a variety of other nucleotides, including GTP. The GMP-PNP effect was specifically inhibited by low concentrations of guanine nucleotides. Addition of cAMP did not mimic the Ca2+-independent GMP-PNP effect, but did slightly enhance Ca2+-dependent secretion. Pretreatment with pertussis toxin had no effect on Ca2+-dependent secretion or on the GMP-PNP effect. There was no detectable diglyceride or inositol phosphate produced during GMP-PNP treatment, and addition of diglyceride and inositol trisphosphate did not induce secretion. Guanosine 5'-(beta-thio)diphosphate (GDP-beta-S), in addition to its ability to inhibit the GMP-PNP effect, partially inhibited Ca2+-dependent secretion. At 10 microM free Ca2+, the effects of GMP-PNP and Ca2+ were nonadditive. In fact, secretion in the presence of both GMP-PNP and 10 microM Ca2+ was slightly less than secretion due to Ca2+ alone. These data suggest that a guanine nucleotide-dependent process interacts in some way with one or more components of the normal Ca2+-dependent secretory pathway. However, it may not be an intrinsic part of the mechanism underlying Ca2+-dependent secretion.  相似文献   

8.
Tetanus toxin (TT), a potent neurotoxin which blocks neurotransmitter release in neuronal systems, also inhibits Ca2(+)-induced catecholamine release from digitonin-permeabilized chromaffin cells. In searching for intracellular targets for the toxin we studied the binding of affinity-purified TT to bovine adrenal chromaffin granules. TT bound in a neuraminidase-sensitive fashion to intact granules and to isolated granule membranes, as assayed biochemically and visualized by electron microscopic techniques. The binding characteristics of the toxin to chromaffin granule membranes are very similar to the binding of TT to brain synaptosomal membranes. We suggest that the TT binding site is a glycoconjugate of the G1b type which is localized on the cytoplasmic face of the granule membrane and might be involved in exocytotic membrane fusion.  相似文献   

9.
Pretreatment of cultured bovine adrenal chromaffin cells with pertussis toxin facilitated nicotine-induced catecholamine release. This facilitation was correlated with the ability of the toxin to catalyze the ADP-ribosylation of an approximately 40-kDa membrane protein. The actions of the toxin were reversed by isonicotinamide, an inhibitor of ADP-ribosylation. Catecholamine release due to high K+ and muscarine was also enhanced by pertussis toxin. In all cases, 45Ca2+ uptake was unaltered in cells treated with the toxin. These results suggest that ADP-ribosylation of a 40-kDa membrane protein facilitates catecholamine release from bovine chromaffin cells without affecting 45Ca2+ uptake.  相似文献   

10.
The role of calmodulin in exocytotic secretion was studied using digitonin-permeabilized bovine adrenal medullary chromaffin cells. Addition of calmodulin to the permeabilized cells increased Ca(2+)-dependent norepinephrine release in a dose-dependent manner. Unlike calmodulin, addition of caldesmon, actin or bovine serum albumin did not increase the release. Calmodulin increased the release at Ca2+ concentrations of more than 10(-6) M and its effect increased with increase in Mg2+ concentration. Th release of norepinephrine enhanced by calmodulin was inhibited by tetanus toxin, which specifically inhibits exocytotic secretion. These results indicate directly that calmodulin plays an important role in exocytotic secretion from chromaffin cells.  相似文献   

11.
The phorbol ester, 4 beta-phorbol 12-myristate acetate (TPA), increased the extent of catecholamine release induced by Ca2+, without affecting the basal release response in digitonin-permeabilized chromaffin cells. This finding is consistent with the hypothesis that protein kinase C has a role to play in stimulus-secretion coupling in the bovine adrenal medullary chromaffin cell.  相似文献   

12.
The subcellular localization of catecholamines and ascorbic acid in cultured bovine adrenal chromaffin cells was studied by permeabilizing the cells with digitonin, a steroid glycoside. Catecholamine release from permeabilized chromaffin cells was dependent on the free calcium concentration and the temperature of the incubation mixture. By contrast, [14C]ascorbic acid, preloaded into the cells, was released by digitonin treatment in a manner independent of the concentration of free calcium and with only moderate regard to the incubation temperature. The sensitivity of ascorbic acid release to digitonin treatment was identical to that of calcium-dependent catecholamine release. These results thus suggest that ascorbic acid preloaded into the cells may directly efflux from the cell cytoplasm as a result of the permeabilization of the plasma membrane. Dimethylepinephrine, a permanently positively charged catecholamine analog which is known to be excluded from vesicular fractions, was also released by digitonin treatment in a manner independent of calcium. The time course of dimethylepinephrine release was very similar to that of ascorbic acid release. Thus, newly accumulated ascorbic acid in chromaffin cells may be localized to a free pool in the cell cytoplasm rather than in a vesicular compartment.  相似文献   

13.
ATP stimulates chromaffin granules from the bovine adrenal medulla to release epinephrine and specific soluble proteins. ATP analogs substituted in the β-γ-position with either nitrogen or carbon were also found to be effective at inducing release from isolated chromaffin granules. However, an ATP analog substituted at the α-β position with carbon was strongly inhibitory. Cyclic AMP was also found to be synthesized by isolated chromaffin granules under release conditions. ATP analogs were effective as substrates for adenylate cyclase in the same order as their efficiency for inducing release from vesicles. Hydrolysis at the β-γ linkage of ATP therefore is probably not necessary for release; however, hydrolysis at the α-β position may be important in the release process. Cyclic AMP may be produced and play a regulatory role in this event.  相似文献   

14.
Classic calcium hypothesis states that depolarization-induced increase in intracellular Ca2+ concentration ([Ca2+]i) triggers vesicle exocytosis by increasing vesicle release probability in neurons and neuroendocrine cells. The extracellular Ca2+, in this calcium hypothesis, serves as a reservoir of Ca2+ source. Recently we find that extracellular Ca2+per se inhibits the [Ca2+]i dependent vesicle exocytosis, but it remains unclear whether quantal size is regulated by extracellular, or intracellular Ca2+ or both [1]. In this work we showed that, in physiological condition, extracellular Ca2+per se specifically inhibited the quantal size of single vesicle release in rat adrenal slice chromaffin cells. The extracellular Ca2+ in physiological concentration (2.5 mM) directly regulated fusion pore kinetics of spontaneous quantal release of catecholamine. In addition, removal of extracellular Ca2+ directly triggered vesicle exocytosis without eliciting intracellular Ca2+. We propose that intracellular Ca2+ and extracellular Ca2+per se cooperately regulate single vesicle exocytosis. The vesicle release probability was jointly modulated by both intracellular and extracellular Ca2+, while the vesicle quantal size was mainly determined by extracellular Ca2+ in chromaffin cells physiologically.  相似文献   

15.
The effect of GTP analogues on catecholamine secretion and [3H]arachidonic acid release from digitonin-permeabilized adrenal chromaffin cells was examined. Several GTP analogues stimulated Ca2(+)-independent exocytosis, with the order of efficacy being XTP greater than ITP greater than guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) greater than guanosine 5'-[gamma-thio]triphosphate (GTP[S]). The stimulatory effect of the GTP analogues appeared to be due to activation of a conventional GTP-binding protein, as it was inhibited by guanosine 5'-[beta-thio]diphosphate (GDP[S]). In contrast, Ca2(+)-dependent exocytosis was only partially inhibited by high doses of GDP[S]. GTP did not stimulate Ca2(+)-independent exocytosis, but instead was found to inhibit secretion caused by micromolar Ca2+. Arachidonic acid (100 microM) also stimulated Ca2(+)-independent catecholamine secretion. Determination of the effect of GTP analogues on release of free [3H]arachidonic acid into the medium showed that it was stimulated by GTP[S] but inhibited by GTP, p[NH]ppG, ITP and XTP. The inhibition of [3H]arachidonic acid release by XTP was not prevented by GDP[S]. These results demonstrate that activation of a GTP-binding protein by certain GTP analogues can induce Ca2(+)-independent secretion in adrenal chromaffin cells and that the effect of GTP analogues on Ca2(+)-independent secretion can be dissociated from generation of arachidonic acid.  相似文献   

16.
Pertussis toxin stimulates both basal and nicotine-evoked catecholamine secretion from intact bovine adrenal chromaffin cells, as well as Ca2(+)-evoked release from permeabilized cells. Tetanus toxin inhibits all these effects; it reduces the secretion of intact cells treated with pertussis toxin to the basal level, and decreases by about 50% Ca2(+)-evoked release from permeabilized cells whether or not previously stimulated by pertussis toxin.  相似文献   

17.
Effects of mastoparan on catecholamine release from chromaffin cells   总被引:3,自引:0,他引:3  
S P Wilson 《FEBS letters》1989,247(2):239-241
Release of catecholamines from bovine adrenal chromaffin cells exposed to mastoparan, a wasp venom peptide which activates GTP-binding proteins and phospholipase A2, was evaluated. Release of catecholamines was dependent on mastoparan concentration and time of exposure. This release was, however, independent of extracellular calcium and accompanied by release of the cytoplasmic marker lactate dehydrogenase. Mastoparan also inhibited catecholamine secretion evoked by nicotine, but the peptide had little or no effect on release induced by other secretagogues. These findings suggest that in chromaffin cells mastoparan is not a secretagogue but rather causes cell lysis and blocks nicotinic receptor function.  相似文献   

18.
Standard (UICC) chrysotile B asbestos fibres caused rapid (within minutes) 5-to-8-fold stimulations of catecholamine secretion from isolated bovine adrenal chromaffin cells without affecting their viability (97%). The stimulation of catecholamine secretion by asbestos was selective to chrysotile type fibres, half-maximal stimulation by standard chrysotile B, chrysotile A, crocidolite, amosite and silica fibres being observed at 7, 73, 160, 250 and ? 500 μg per ml, respectively. The secretory effect of chrysotile B was additive to that of acetylcholine and blocked by either the divalent cations, Co2+, Ni2+ and Mg2+ or the ion chelators, EGTA and EDTA. Conversely, neither verapamil, methoxyverapamil, or removal of extracellular calcium affected the asbestos-evoked catecholamine secretion. These data indicate that the selective stimulatory effect of chrysotile type asbestos on adrenal chromaffin cells can be mediated by membrane or intracellular calcium and raise the question of the possible involvement of catecholamines in the pathogenesis of asbestos related diseases.  相似文献   

19.
Recent evidence suggests that endocytosis in neuroendocrine cells and neurons can be tightly coupled to exocytosis, allowing rapid retrieval from the plasma membrane of fused vesicles for future use. This can be a much faster mechanism for membrane recycling than classical clathrin-mediated endocytosis. During a fast exo-endocytotic cycle, the vesicle membrane does not fully collapse into the plasma membrane; nevertheless, it releases the vesicular contents through the fusion pore. Once the vesicle is depleted of transmitter, its membrane is recovered without renouncing its identity. In this report, we show that chromaffin cells contain catecholamine-free granules that retain their ability to fuse with the plasma membrane. These catecholamine-free granules represent 7% of the total population of fused vesicles, but they contributed to 47% of the fusion events when the cells were treated with reserpine for several hours. We propose that rat chromaffin granules that transiently fuse with the plasma membrane preserve their exocytotic machinery, allowing another round of exocytosis.  相似文献   

20.
1. Effects of imidazole compounds and guanabenz on the stimulus-evoked release of catecholamine (CA) were studied in cultured bovine adrenal chromaffin cells. 2. Clonidine, oxymetazoline, phentolamine, chlorpheniramine, and guanabenz inhibited acetylcholine (ACh)-evoked CA release in a dose-dependent manner, but not high K(+)-evoked release. 3. The inhibition by these compounds was not antagonized by nonimidazole and nonguanidine alpha 2-antagonists (yohimbine and phenoxybenzamine) but was significantly antagonized by tolazoline (imidazole alpha 2-antagonist) and cimetidine (imidazole H2-antagonist). Moreover, tolazoline by itself augmented the ACh-evoked, but not the high K(+)-evoked, CA release. 4. Although chlorpheniramine and cimetidine are antagonists for H1 and H2 histaminergic receptors, the site of action for these compounds in our results seemed to differ from the histamine receptors. 5. These results suggest that the inhibitory action of imidazole compounds and guanabenz on ACh-evoked CA release in adrenal chromaffin cells is mediated through an imidazole receptor. Adrenal chromaffin cells may contain an endogenous clonidine-displacing substance (CDS) which has been found in adrenal gland and brain as an endogenous ligand for imidazole receptors. Thus, CDS may have a regulatory role in the stimulus-secretion coupling in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号