首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
D-Glucose-6-phosphate dehydrogenase is a regulatory enzyme of the oxidative pentose phosphate pathway in Schizasaccharomyces pombe. The enzyme is subject to negative cooperative regulation by D-glucose-6-phosphate as characterized by the Hill coefficient of 0.68 +/- 0.04. D-Glyceraldehyde-3-phosphate and D-ribulose-5-phosphate rectify the negative cooperativity as evidenced from a change in the Hill coefficients to 0.98 +/- 0.05 and 1.02 +/- 0.05, respectively. These pentose phosphate pathway intermediates also inhibit the enzyme competitively with respect to D-glucose-6-phosphate. Thus, D-glucose-6-phosphate dehydrogenase provides an avenue for regulating the partitioning of D-glucose between the redundant branches of the oxidative phosphate pathway in S. pombe.  相似文献   

3.
D-Mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and D-glucitol-6-phosphate dehydrogenase (EC 1.1.1.140) were purified to apparent homogeneity in good yields from Escherichia coli. The amino acid compositions, N-terminal amino acid sequences, sensitivities to chemical reagents, and catalytic properties of the two enzymes were determined. Both enzymes showed absolute specificities for their substrates. The subunit molecular weights of mannitol-1-phosphate and glucitol-6-phosphate dehydrogenases were 40,000 and 26,000, respectively; the apparent molecular weights of the native proteins, determined by gel filtration, were 40,000 and 117,000, respectively. It is therefore concluded that whereas mannitol-1-phosphate dehydrogenase is a monomer, glucitol-6-phosphate dehydrogenase is probably a tetramer. These two proteins differed in several fundamental respects.  相似文献   

4.
Pantothenase (EC 3.5.1.22) from Pseudomonas fluorescens UK-1 was purified to homogeneity as judged by disc-gel electrophoresis and isoelectric focusing. The purification procedure consisted of four steps: DEAE-Sephadex chromatography, (NH4)2SO4 precipitation, hydroxyapatite chromatography and preparative polyacrylamide-gel electrophoresis. Gel filtration on Ultrogel AcA 34 was used to determine the molecular weight, and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis to study the subunit molecular weight. The enzyme appeared to be composed of two subunits with mol.wts. of approx. 50000 each. The total mol.wt. of the enzyme was thus about 100000. The isoelectric point was 4.7 at 10 degrees C.  相似文献   

5.
d-Glucose-6-phosphate nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase (EC 1.1.1.49) from Bacillus licheniformis has been purified approximately 600-fold. The enzyme appears to be constitutive and exhibits activity with either oxidized NAD (NAD(+)) or oxidized NADP (NADP(+)) as electron acceptor. The enzyme has a pH optimum of 9.0 and has an absolute requirement for cations, either monovalent or divalent. The enzyme exhibits a K(m) of approximately 5 muM for NADP(+), 3 mM for NAD(+), and 0.2 mM for glucose-6-phosphate. Reduced NADP (NADPH) is a competitive inhibitor with respect to NADP(+) (K(m) = 10 muM). Phosphoenolpyruvate (K(m) = 1.6 mM), adenosine 5'-triphosphate (K(m) = 0.5 mM), adenosine diphosphate (K(m) = 1.5 mM), and adenosine 5'-monophosphate (K(m) = 3.0 mM) are competitive inhibitors with respect to NAD(+). The molecular weight as estimated from sucrose density centrifugation and molecular sieve chromatography is 1.1 x 10(5). Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is composed of two similar subunits of approximately 6 x 10(4) molecular weight. The intracellular levels of glucose-6-phosphate, NAD(+), and NADP(+) were measured and found to be approximately 1 mM, 0.9 mM, and 0.2 mM, respectively, during logarithmic growth. From a consideration of the substrate pool sizes and types of inhibitors, we conclude that this single constitutive enzyme may function in two roles in the cell-NADH production for energetics and NADPH production for reductive biosynthesis.  相似文献   

6.
7.
Triacylglycerol lipase of Pseudomonas fluorescens was purified from the crude enzyme by ammonium sulfate precipitation and chromatographies on Sephadex G-75 and DEAE-cellulose. The crystallization of the lipase was successfully carried out. The purified lipase was demonstrated to be homogenous on disc electrophoresis and its molecular weight was calculated to be 32 000 by gel filtration. The optimum pH for hydrolysis of sesame oil was 7.0. The enzyme was stable up to 40 degrees C under the condition of pH 7.0 for 30 min and had more than 80% of the remaining activity between pH 5.0--11.0 at 37 degrees C for 60 min. The lipase was strongly inhibited by iodine and partially inhibited by FeCl3 and N-bromosuccinimide, and showed the most activity on tricaproyglycerol, among the triacylglycerols used.  相似文献   

8.
9.
Pantoate dehydrogenase and dimethylmalate dehydrogenase were purified 69- and 112-fold, respectively, from Pseudomonas fluorescens UK-1 by ammonimu sulphate precipitation. Ultrogel AcA 34 gel filtration, hydroxyapatite column chromatography, heat treatment and Ultrogel AcA 44 gel filtration. The enzymes were evaluated for homogeneity (pantoate dehydrogenase was estimated to be about 95% pure) by disc and sodium dodecyl sulphate gel electrophoresis and by immunodiffusion. Pantoate and dimethylmalate dehydrogenases have molecular weights of 83 000 and 138 000, respectively, and are dissociable into four identical subunits with molecular weights of 24 000 and 34 000.  相似文献   

10.
11.
Glucose-6-phosphate dehydrogenase [D-glucose-6-phosphate: NADP oxidoreductase, EC. 1. 1. 1. 49] obtained from spores of Bacillus subtilis PCI 219 strain was partially purified by filtration on Sephadex G-200, ammonium sulfate fractionation and chromatography on DEAE-Sephadex A-25 (about 54-fold). The optimum pH for stability of this enzyme was about 6.3 and the optimum pH for the reaction about 8.3. The apparent Km values of the enzyme were 5.7 X 10(-4) M for glucose-6-phosphate and 2.4 X 10(-4) M for nicotinamide adenine dinucleotide phosphate (NADP). The isoelectric point was about pH 3.9. The enzyme activity was unaffected by the addition of Mg++ or Ca++. The inactive glucose-6-phosphate dehydrogenase obtained from the spores heated at 85 C for 30 min was not reactivated by the addition of ethylenediaminetetraacetic acid, dipicolinic acid or some salts unlike inactive glucose dehydrogenase.  相似文献   

12.
Glucose 6-phosphate dehydrogenase (G6PD) was purified from turkey erythrocytes by ammonium sulphate precipitation and followed by ADP Sepharose affinity gel chromatography. The yield was 49.71% and specific activity of the enzyme was found to be 44.16 EU/mg protein. By gel filtration the molecular mass was found to be 75 kDa. The enzyme had an optimum pH at 9.0, and optimum temperature at 50 degrees C. Km and Vmax for NADP(+) and glucose 6- phosphate (G6-P) as substrates were also determined and effects of inhibitors such as ATP, NADH and NADPH were examined.  相似文献   

13.
Glucose 6-phosphate dehydrogenase (EC 1.1.1.49) was purified from Aspergillus aculeatus, a filamentous fungus previously isolated from infected tongue of a patient. The enzyme, apparently homogeneous, had a specific activity of 220 units mg(-1), a molecular weight of 105,000 +/- 5,000 Dal by gel filtration and subunit size of 52,000 +/- 1,100 Dal by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The substrate specificity was extremely strict, with glucose 6-phosphate (G6P) being oxidized by nicotinamide adenine dinucleotide phosphate (NADP) only. At assay pH of 7.5, the enzyme had K(m) values of 6 microM and 75 microM for NADP and G6P respectively. The k(cat) was 83 s(-1). Steady-state kinetics at pH 7.5 produced converging linear Lineweaver-Burk plots as expected for ternary-complex mechanism. The patterns of product and dead-end inhibition suggested that the enzyme can bind NADP and G6P separately to form a binary complex, indicating a random-order mechanism. The enzyme was irreversibly inactivated by heat in a linear fashion, with G6P providing a degree of protection. Phosphoenolpyruvate (PEP), adenosinetriphosphate (ATP), and fructose 6-phosphate (F6P), in decreasing order, are effective inhibitors. Zinc and Cobalt ions were effective inhibitors although cobalt ion was more potent; the two divalent metals were competitive inhibitors with respect to G6P, with Ki values of 6.6 microM and 4.7 microM respectively. It is proposed that inhibition by divalent metal ions, at low NADPH /NADP ratio, is another means of controlling pentosephosphate pathway.  相似文献   

14.
The NADP-linked glucose-6-phosphate dehydrogenase from Acetobacter hansenii (formerly known as Acetobacter xylinum) has been purified to apparent homogeneity. The sequence of the 10 N-terminal amino acids was determined. The subunit molecular weight of the enzyme is 53,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; gel filtration studies under nondenaturing conditions revealed that the molecular weight of the enzyme is 200,000 to 220,000 at pH 6.5 and 9.5, suggesting that the native enzyme is a tetramer. Specificity studies at both pH 6.5 and 9.5 demonstrated that the enzyme is a typical NADP-preferring glucose-6-phosphate dehydrogenase. The enzyme's catalytic activity increases with increasing pH, kcat being approximately 4 times greater at pH 9.5 than at pH 6.7 and the Km for NADP+ being 3 times lower at the higher pH; but the Km for glucose 6-phosphate is nearly 20 times higher at pH 9.5 than at pH 6.7, suggesting that the enzyme is catalytically more efficient at the lower pH. At pH 6.7, initial velocity measurements, product inhibition by NADPH, and inhibition by glucosamine 6-phosphate yielded results that were consistent with a steady-state random mechanism. At pH 9.5, steady-state kinetic analyses suggested that the mechanism is ordered, with coenzyme binding first, but nonlinear double-reciprocal plots were observed in the presence of NADPH when glucose 6-phosphate was varied and a complete kinetic analysis was not undertaken. Among several nucleotides and potential inhibitory ligands examined, only 2',5'-ADP inhibited the enzyme significantly.  相似文献   

15.
16.
1. Glucose 6-phosphate dehydrogenase was isolated and partially purified from a thermophilic fungus, Penicillium duponti, and a mesophilic fungus, Penicillium notatum. 2. The molecular weight of the P. duponti enzyme was found to be 120000+/-10000 by gelfiltration and sucrose-density-gradient-centrifugation techniques. No NADP(+)- or glucose 6-phosphate-induced change in molecular weight could be demonstrated. 3. Glucose 6-phosphate dehydrogenase from the thermophilic fungus was more heat-stable than that from the mesophile. Glucose 6-phosphate, but not NADP(+), protected the enzyme from both the thermophile and the mesophile from thermal inactivation. 4. The K(m) values determined for glucose 6-phosphate dehydrogenase from the thermophile P. duponti were 4.3x10(-5)m-NADP(+) and 1.6x10(-4)m-glucose 6-phosphate; for the enzyme from the mesophile P. notatum the values were 6.2x10(-5)m-NADP(+) and 2.5x10(-4)m-glucose 6-phosphate. 5. Inhibition by NADPH was competitive with respect to both NADP(+) and glucose 6-phosphate for both the P. duponti and P. notatum enzymes. The inhibition pattern indicated a rapid-equilibrium random mechanism, which may or may not involve a dead-end enzyme-NADP(+)-6-phosphogluconolactone complex; however, a compulsory-order mechanism that is consistent with all the results is proposed. 6. The activation energies for the P. duponti and P. notatum glucose 6-phosphate dehydrogenases were 40.2 and 41.4kJ.mol(-1) (9.6 and 9.9kcal.mol(-1)) respectively. 7. Palmitoyl-CoA inhibited P. duponti glucose 6-phosphate dehydrogenase and gave an inhibition constant of 5x10(-6)m. 8. Penicillium glucose 6-phosphate dehydrogenase had a high degree of substrate and coenzyme specificity.  相似文献   

17.
1. D-GPDH from HeLa cells was isolated and purified. 2. Some basic kinetic constants are reported. 3. Sodium dodecyl polyacrylamide gel electrophoresis gave a single band with a molecular weight of approximately 36 K. 4. ATP and NADH inhibit competitively enzyme activity. 5. Comparative catalytic properties of GPDH from normal and tumor cells were effectuated.  相似文献   

18.
Pseudomonas fluorescens E118 was isolated from soil as an effective eugenol-degrading organism by a screening using eugenol as enrichment substrate. The first enzyme involved in the degradation of eugenol in this organism, eugenol dehydrogenase, was purified after induction by eugenol, and the purity of the enzyme was shown by SDS-PAGE and gel-permeation HLPC. The enzyme is a heterodimer that consists of a 10-kDa cytochrome c and a 58-kDa subunit. The larger subunit presumably contains flavin, suggesting a flavocytochrome c structure and an electron transfer via flavin and cytochrome c during dehydrogenation. The activity of the purified enzyme depended on the addition of a final electron acceptor such as phenazine methosulfate, 2,6-dichlorophenol-indophenol, cytochrome c, or potassium ferricyanide. The enzyme catalyzed the dehydrogenation of three different 4-hydroxybenzylic structures including the conversion of eugenol to coniferyl alcohol, 4-alkylphenols to 1-(4-hydroxyphenyl)alcohols, and 4-hydroxybenzylalcohols to the corresponding aldehydes. The catalytic and structural similarity between this enzyme and a Penicillium vanillyl-alcohol oxidase and 4-alkylphenol methylhydroxylases from several Pseudomonas species is discussed. Received: 17 June 1998 / Accepted: 12 October 1998  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号