首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of amiodarone (AMD) on lipid peroxidation of rat liver mitochondria, the formation of superoxide anions at the respiratory chain level, and the cytosolic and mitochondrial enzymatic protective mechanisms of oxidative stress were studied. An attempt to classify AMD according to its toxic ability to interfere with the integrated function of electron transport enzymes was also investigated. The results confirm the effects of AMD on complex I and permit the placing of this drug in class A of the classification of Knobeloch, together with rotenone, amytal and chaotropic agents. AMD has no effect on the activity of the enzymes superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase, nor on glucose 6-phosphate dehydrogenase. AMD did not promote an increase in the formation of anion superoxide at the respiratory chain level. Pre-incubation with AMD (16·6 μM ) inhibited about 70 per cent of lipid peroxidation. The results suggest a protective effect of AMD against lipid peroxidation in mitochondrial membranes by iron-dependent systems. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
In rat liver submitochondrial particles both NADH and NADPH inhibit lipid peroxidation induced by cumene hydroperoxide. Concomitantly with the inhibition of lipid peroxidation, NADH and NADPH strongly stimulate the peroxidase activity of rat liver submitochondrial particles. Rotenone slightly prevents both the protective effect on malondialdehyde formation and peroxidase activity. The peroxidase activity of rat liver submitochondrial particles was attributed to the NAD(P)H-mediated reduction of mitochondrial cytochrome P-450 which can act upon hydroperoxides, by decomposing them to alcohols.  相似文献   

3.
Free radical scavenging and antioxidant activities of a standardized extract of Hypericum perforatum (SHP) were examined for inhibition of lipid peroxidation, for hydroxyl radical scavenging activity and interaction with 1,1-diphenyl-2-picrylhydrazyl stable free radical (DPPH). Concentrations between 1 and 50 microg/ml of SHP effectively inhibited lipid peroxidation of rat brain cortex mitochondria induced by Fe2+/ascorbate or NADPH system. The results showed that SHP scavenged DPPH radical in a dose-dependent manner and also presented inhibitory effects on the activity of xanthine oxidase. In contrast, hydroxyl radical scavenging occurs at high doses. The protective effect of the standardized extract against H2O2-induced oxidative damage on the pheochromocytoma cell line PC 12 was investigated by measuring cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays, caspase-3-enzyme activity and accumulation of reactive oxygen species [2',7'-dichlorofluorescin (DCF) assay]. Following 8-h cell exposure to H2O2 (300 microM), a marked reduction in cell survival was observed, which was significantly prevented by SHP (pre-incubated for 24 h) at 1-100 microg/ml. In a separate experiment, different concentrations of the standardized extract (0.1-100 microg/ml) also attenuated the increase in caspase-3 activity and suppressed the H2O2 -induced reactive oxygen species generation. Taken together, these results suggest that SHP shows relevant antioxidant activity both in vitro and in a cell system, by means of inhibiting free radical generation and lipid peroxidation.  相似文献   

4.
Paraquat and iron-dependent lipid peroxidation   总被引:3,自引:0,他引:3  
The aim of this work was to study the effect of paraquat (P2+) on NADPH iron-dependent lipid peroxidation (basal peroxidation) either in the presence of NADPH or in the presence of NADPH-generating systems. When NADPH is present, P2+ potentiates NADPH iron-dependent lipid peroxidation, but use of NADPH-generating systems cancels this effect. This may be attributed to certain components in NADPH-generating systems such as glucose-6-phosphate and sodium isocitrate, which act as iron chelators. The binding of iron by these molecules facilitates its reduction and enhances its reactivity toward dioxygen molecules, leading to the formation of reactive species capable of initiating lipid peroxidation, such as Fe3+-O 2 . Under these conditions of rapid basal peroxidation, any additional reduction of iron(III) by a reduced form of P2+ (P+.) has no apparent effect on the peroxidation itself, probably because the initial reaction between iron(II) and O2 followed by initiation of the peroxidation are both rate-limiting steps in the process. Consequently, any alteration of the composition of the reacting mixture (e.g., buffers or the generating system) must be taken into consideration because the formation of new iron chelates can change the rate of basal peroxidation and will modify the effect of redoxcycling molecules.  相似文献   

5.
Melatonin (N-acetyl-5-methoxytryptamine) and its immediate precursor N-acetyl serotonin in the metabolism of tryptophan are free radical scavengers that have been found to protect against non-enzymatic lipid peroxidation in many experimental models. By contrast, little is known about the antioxidant ability of these indoleamines against NADPH enzymatic lipid peroxidation. The light emission produced by rat-liver microsomes, expressed as total cpm during 180 min of incubation at 37 degrees C, was two-fold greater in the presence of ascorbate (0.4mM) when compared with NADPH (0.2 mM). Maximal peaks of light emission produced by microsomes lipid peroxidized with ascorbic-Fe(2+) or NADPH and expressed as cpm were 354,208 (at 60 min) and 135,800 (at 15 min), respectively. During non-enzymatic lipid peroxidation a decrease of total chemiluminescence (inhibition of lipid peroxidation) was observed when increasing concentrations of melatonin were added to liver microsomes. The protective effect was concentration-dependent. The inhibition observed in light emission was coincident with the protection of the most PUFAs. Preincubation of microsomes with N-acetyl serotonin reduced these changes very dramatically. Thus, in the presence of both antioxidants (0.36, 0.75, 1.5 mM), light emission percent inhibition during non-enzymatic (ascorbate-Fe(2+)) lipid peroxidation of rat liver microsomes was for melatonin: 6.12, 16.20, 34.88 and for N-acetyl serotonin: 85.10, 88.48, 84.4 respectively. The incubation of rat liver microsomes in the presence of NADPH (0.36, 0.75, 1.5 mM) produce a sudden increase of chemiluminescence that gradually increased and reached a maximal value at about 15 min; however, N-acetyl serotonin reduced these changes very efficiently.  相似文献   

6.
Recent studies have shown that oxidative stress plays an important role in cardiovascular diseases. NADPH oxidase is one of the major sources of superoxide anions and a candidate for the initiation and development of atherosclerosis, which involves the remodeling of vasculature. However, the relevance of NADPH oxidase in ventricular remodeling has not been well-characterized. This is the first report showing that the expression of p22-phox and gp91-phox, essential components of NADPH oxidase, are increased in the infarcted sites after myocardial infarction. The levels of thiobarbituric acid reactive substance, which indicates the lipid peroxidation level, and nuclear factor-kappaB (NF-kappaB) DNA binding activity are also increased in infarcted sites. Our results suggest that the increased expression of NADPH oxidase may have an effect on left ventricular remodeling by increasing the redox-sensitive NF-kappaB DNA binding activity as well as the lipid peroxidation level.  相似文献   

7.
1. NADPH-dependent iron and drug redox cycling, as well as lipid peroxidation process were investigated in microsomes isolated from human term placenta. 2. Paraquat and menadione were found to undergo redox cycling, catalyzed by NADPH:cytochrome P-450 reductase in placental microsomes. 3. The drug redox cycling was able to initiate microsomal lipid peroxidation in the presence of micromolar concentrations of iron and ethylenediaminetetraacetate (EDTA). 4. Superoxide was essential for the microsomal lipid peroxidation in the presence of iron and EDTA. 5. Drastic peroxidative conditions involving superoxide and prolonged incubation in the presence of iron were found to destroy flavin nucleotides, inhibit NADPH:cytochrome P-450 reductase and inhibit propagation step of lipid peroxidation. 6. Reactive oxo-complex formed between iron and superoxide is proposed as an ultimate species for the initiation of lipid peroxidation in microsomes from human term placenta as well as for the destruction of flavin nucleotides and inhibition of NADPH:cytochrome P-450 reductase as well as for impairment of promotion of lipid peroxidation under drastic peroxidative conditions.  相似文献   

8.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.  相似文献   

9.
NADPH-menadione reductase activity by rat brain microsomes (Ms) was decreased 40-50% by 10 microM dicumarol, a potent inhibitor of DT-diaphorase, whereas no change in NADPH-paraquat (PQ) and -diquat (DQ) reductase activity was observed. NADPH-DQ reductase activity in brain Ms was 2.5-fold higher than NADPH-PQ reductase activity. The formation of PQ and DQ radicals was verified optically and observed directly by ESR spectroscopy in the NADPH-PQ and -DQ reductase reactions by brain Ms under anaerobic conditions. PQ- and DQ-induced superoxide formation was confirmed by the detection of DMPO-OOH ESR signals and followed by chemiluminescence (CL) of a Cypridina luciferin analogue (CLA). The kinetics and intensity of the CL were consistent with the observations that the reduction in DQ is faster than that in PQ. Thiobarbituric acid reactive substances (TBARS) and phospholipid hydroperoxides in brain Ms increased in the presence of NADPH and Fe3+. The generation of both lipid peroxidation products derived from brain Ms decreased with increasing concentrations of PQ and DQ. The inhibitory effect of DQ is more pronounced than that of PQ. The formation of PQ- and DQ-induced reactive oxygen species was not associated with lipid peroxidation in rat brain Ms.  相似文献   

10.
In the presence of Fe-3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1, 3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. The results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe-3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe-2+ by oxygen.  相似文献   

11.
Our previous results indicated that cytochrome P450 destruction by benzene metabolites was caused mainly by benzoquinone (Soucek et al., Biochem. Pharmacol. 47 (1994) 2233-2242). The aim of this study was to investigate the interconversions between hydroquinone, semiquinone, and benzoquinone with regard to both spontaneous and enzymatic processes in order to test the above hypothesis. We have also studied the participation of hydroquinone and benzoquinone in OH radicals formation and lipid peroxidation as well as the role of ascorbate and transition metals. In buffered aqueous solution, hydroquinone was slowly oxidized to benzoquinone via a semiquinone radical. This conversion was slowed down by the addition of NADPH and completely stopped by microsomes in the presence of NADPH. Benzoquinone was reduced to semiquinone radical at a significantly higher rate and this conversion was stimulated by NADPH and more effectively by microsomes plus NADPH while semiquinone radical was quenched there. In microsomes with NADPH. both hydroquinone and benzoquinone stimulated the formation of OH radicals but inhibited peroxidation of lipids. Ascorbate at 0.5-5 mM concentration also produced significant generation of OH radicals in microsomes. Neither hydroquinone nor benzoquinone did change this ascorbate effect. On the contrary, 0.1-1.0 mM ascorbate stimulated peroxidation of lipids in microsomes whereas presence of hydroquinone or benzoquinone completely inhibited this deleterious effect of ascorbate. Iron-Fe2+ apparently played an important role in lipid peroxidation as shown by EDTA inhibition, but it did not influence OH radical production. In contrast, Fe3+ did not influence lipid peroxidation, but stimulated OH radical production. Thus, our results indicate that iron influenced the above processes depending on its oxidation state, but it did not influence hydroquinone/benzoquinone redox processes including the formation of semiquinone. It can be concluded that interconversions between hydroquinone and benzoquinone are influenced by NADPH and more effectively by the complete microsomal system. Ascorbate, well-known antioxidant produces OH radicals and peroxidation of lipids. On the other hand, both hydroquinone and benzoquinone appear to be very efficient inhibitors of lipid peroxidation.  相似文献   

12.
Microsomal lipid peroxidation induced by NADPH, but not by ascorbate, was found to be inhibited by liver cytosol. This inhibition was not dependent on glutathione and was enhanced by ADP in presence of Fe2+ at a concentration of 50 microM or higher. ATP was also effective, but not AMP or cyclic AMP. The cytosolic factor appeared to be a protein as it was heat-labile (greater than 70 degrees C), was non-dialyzable and was precipitated by ammonium sulfate and acetone. It was stable for several months in frozen state and also when heated at 50 degrees C for 10 min. The inhibition by the cytosolic protein was obtained by producing a lag in the activity of lipid peroxidation and was reversed by ceruloplasmin but not by catalase, cytochrome c, hemoglobin or superoxide dismutase. This inhibitory effect by cytosol was limited to formation of lipid peroxides whereas oxygen uptake and NADPH oxidation remained unaffected. Regulation of lipid peroxidation by nucleotide-Fe complexes and cytosolic proteins is indicated by these studies.  相似文献   

13.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of IDPm against heat shock in HEK293 cells, an embryonic kidney cell line, was investigated in control and cells transfected with the cDNA for IDPm, where IDPm activity was 6-7 fold higher than that in the control cells carrying the vector alone. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in control cells as compared to HEK293 cells in which IDPm was over-expressed. We also observed the significant difference in the cellular redox status reflected by the endogenous production of reactive oxygen species, NADPH pool and GSH recycling between two cells. The results suggest that IDPm plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of reactive oxygen species.  相似文献   

14.
Both elevated iron concentrations and the resulting oxidative stress condition are common signs in retinas of patients with age-related macular degeneration (AMD). The role of phospholipase A(2) (PLA(2)) during iron-induced retinal toxicity was investigated. To this end, isolated retinas were exposed to increasing Fe(2+) concentrations (25, 200 or 800μM) or to the vehicle, and lipid peroxidation levels, mitochondrial function, and the activities of cytosolic PLA(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) were studied. Incubation with Fe(2+) led to a time- and concentration-dependent increase in retinal lipid peroxidation levels whereas retinal cell viability was only affected after 60min of oxidative injury. A differential release of arachidonic acid (AA) and palmitic acid (PAL) catalyzed by cPLA(2) and iPLA(2) activities, respectively, was also observed in microsomal and cytosolic fractions obtained from retinas incubated with iron. AA release diminished as the association of cyclooxigenase-2 increased in microsomes from retinas exposed to iron. Retinal lipid peroxidation and cell viability were also analyzed in the presence of cPLA(2) inhibitor, arachidonoyl trifluoromethyl ketone (ATK), and in the presence of iPLA(2) inhibitor, bromoenol lactone (BEL). ATK decreased lipid peroxidation levels and also ERK1/2 activation without affecting cell viability. BEL showed the opposite effect on lipid peroxidation. Our results demonstrate that iPLA(2) and cPLA(2) are differentially regulated and that they selectively participate in retinal signaling in an experimental model resembling AMD.  相似文献   

15.
Microsomal NADPH-driven electron transport is known to initiate lipid peroxidation by activating oxygen in the presence of iron. This pro-oxidant effect can mask an antioxidant function of NADPH-driven electron transport in microsomes via vitamin E recycling from its phenoxyl radicals formed in the course of peroxidation. To test this hypothesis we studied the effects of NADPH on the endogenous vitamin E content and lipid peroxidation induced in liver microsomes by an oxidation system independent of iron: an azo-initiator of peroxyl radicals, 2,2'-azobis (2,4-dimethylvaleronitrile), (AMVN), in the presence of an iron chelator deferoxamine. We found that under conditions NADPH: (i) inhibited lipid peroxidation; (ii) this inhibitory effect was less pronounced in microsomes from vitamin E-deficient rats than in microsomes from normal rats; (iii) protected vitamin E from oxidative destruction; (iv) reduced chromanoxyl radicals of vitamin E homologue with a 6-carbon side-chain, chromanol-alpha-C-6. Thus NADPH-driven electron transport may function both to initiate and/or inhibit lipid peroxidation in microsomes depending on the availability of transition metal catalysts.  相似文献   

16.
Recent studies have demonstrated that human spermatozoa are capable of generating reactive oxygen species and that this activity is significantly accelerated in cases of defective sperm function. In view of the pivotal role played by lipid peroxidation in mediating free radical damage to cells, we have examined the relationships between reactive oxygen species production, lipid peroxidation, and the functional competence of human spermatozoa. Using malondialdehyde production in the presence of ferrous ion promoter as an index of lipid peroxidation, we have shown that lipid peroxidation is significantly accelerated in populations of defective spermatozoa exhibiting high levels of reactive oxygen species production or in normal cells stimulated to produce oxygen radicals by the ionophore, A23187. The functional consequences of lipid peroxidation included a dose-dependent reduction in the ability of human spermatozoa to exhibit sperm oocyte-fusion, which could be reversed by the inclusion of a chain-breaking antioxidant, alpha-tocopherol. Low levels of lipid peroxidation also had a slight enhancing effect on the generation of reactive oxygen species in response to ionophore, without influencing the steady-state activity. At higher levels of lipid peroxidation, both the basal level of reactive oxygen species production and the response to A23187 were significantly diminished. In contrast, lipid peroxidation had a highly significant, enhancing effect on the ability of human spermatozoa to bind to both homologous and heterologous zonae pellucidae via mechanisms that could again be reversed by alpha-tocopherol. These results are consistent with a causative role for lipid peroxidation in the etiology of defective sperm function and also suggest a possible physiological role for the reactive oxygen species generated by human spermatozoa in mediating sperm-zona interaction.  相似文献   

17.
Hepatocyte susceptibility to glyoxal is dependent on cell thiamin content   总被引:1,自引:0,他引:1  
Glyoxal, a reactive dicarbonyl, is detoxified primarily by the glyoxalase system utilizing glutathione (GSH) and by the aldo-keto reductase enzymes which utilizes NAD[P]H as the co-factor. Thiamin (Vitamin B(1)) is an essential coenzyme for transketolase (TK) that is part of the pentose phosphate pathway which helps maintain cellular NADPH levels. NADPH plays an intracellular role in regenerating glutathione (GSH) from oxidized GSH (GSSG), thereby increasing the antioxidant defenses of the cell. In this study we have focused on the prevention of glyoxal toxicity by supplementation with thiamin (3mM). Thiamin was cytoprotective and restored NADPH levels, glyoxal detoxification and mitochondrial membrane potential. Hepatocyte reactive oxygen species (ROS) formation, lipid peroxidation and GSH oxidation were decreased. Furthermore, hepatocytes were made thiamin deficient with oxythiamin (3mM) as measured by the decreased hepatocyte TK activity. Under thiamin deficient conditions a non-toxic dose of glyoxal (2mM) became cytotoxic and glyoxal metabolism decreased; while ROS formation, lipid peroxidation and GSH oxidation was increased.  相似文献   

18.
Dey A  Parmar D  Dhawan A  Dash D  Seth PK 《Life sciences》2002,71(21):2509-2519
To investigate the similarities in the catalytic activity of blood lymphocyte P450 2E1 in blood lymphocyte with the liver isoenzyme, NADPH dependent lipid peroxidation and activity of N-nitrosodimethyamine demethylase (NDMA-d) was studied in rat blood lymphocytes. Blood lymphocytes were found to catalyse NADPH dependent (basal) lipid peroxidation and demethylation of N-nitrosodimethylamine (NDMA). Pretreatment with ethanol or pyrazole or acetone resulted in significant increase in the NADPH dependent lipid peroxidation and the activity of NDMA-d in blood lymphocytes and liver microsomes. In vitro addition of CCl(4) to the blood lymphocytes isolated from control or ethanol pretreated rats resulted in an increase in the NADPH dependent lipid peroxidation. Significant inhibition of the basal and CCl(4) supported NADPH dependent lipid peroxidation and NDMA-d activity in blood lymphocytes isolated from control or ethanol pretreated rats by dimethyl formamide or dimethyl sulfoxide or hexane, solvents known to inhibit P450 2E1 catalysed reactions in liver and anti- P450 2E1, have indicated the role of P450 2E1 in the NADPH dependent lipid peroxidation in rat blood lymphocytes. The data indicating similarities in the NADPH dependent lipid peroxidation and NDMA-d activity in blood lymphocyte with the liver microsome have provided evidence that blood lymphocyte P450 2E1 could be used as a surrogate to monitor and predict hepatic levels of the enzyme.  相似文献   

19.
The role of iron and iron chelators in the initiation of microsomal lipid peroxidation has been investigated. It is shown that an Fe3+ chelate in order to be able to initiate enzymically induced lipid peroxidation in rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with O2; and (c) formation of a relatively stable perferryl radical. NADH can support lipid peroxidation in the presence of ADP-Fe3+ or oxalate-Fe3+ at rates comparable to those obtained with NADPH but requires 10 to 15 times higher concentrations of the Fe3+ chelates for maximal activity. The results are discussed in relation to earlier proposed mechanisms of microsomal lipid peroxidation.  相似文献   

20.
Alterations of catalytic activities of the microsomal glucose-6-phosphatase system were examined following either ferrous iron- or halothane (CF3CHBrCl) and carbon tetrachloride (CCl4) free-radical-mediated peroxidation of the microsomal membrane. Enzyme assays were performed in native and solubilized microsomes using either glucose 6-phosphate or mannose 6-phosphate as substrate. Lipid peroxidation was assessed by the amounts of malondialdehyde equivalents formed. Regardless of whether the experiments were performed in the presence of NADPH/Fe3+, NADPH/CF3CHBrCl, or NADPH/CCl4, with the onset of lipid peroxidation, mannose-6-phosphatase activity of the native microsomes increased immediately, while further alterations in catalytic activities were only detectable when lipid peroxidation had passed characteristic threshold values: above 2 nmol malondialdehyde/mg microsomal protein, glucose-6-phosphatase activity of the native microsomes was lost, and at 10 nmol malondialdehyde/mg microsomal protein, glucose-6-phosphatase and mannose-6-phosphatase activity of the solubilized microsomes started to decline. It is concluded that the latter alterations are due to an irreversible damage of the phosphohydrolase active site of the glucose-6-phosphatase system, while the changes observed at earlier stages of microsomal lipid peroxidation may also reflect alterations of the transporter components of the glucose-6-phosphatase system. Virtually no changes in the catalytic activities of the glucose-6-phosphatase system occurred under anaerobic conditions, indicating that CF3CHCl and CCl3 radicals are without direct damaging effect on the glucose-6-phosphatase system. Further, maximum effects of carbon tetrachloride and halothane on lipid peroxidation and enzyme activities were observed at an oxygen partial pressure (PO2) of 2 mmHg, providing additional evidence for the crucial role of low PO2 in the hepatotoxicity of both haloalkanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号