首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【背景】石油作为一类混杂有机化合物,一旦产生污染就会对人类和环境造成严重的危害。【目的】从新疆石油污染土壤中分离筛选石油降解菌,为石油污染土壤的生物修复提供数据支持及技术参考。【方法】以石油为唯一碳源,通过富集培养、筛选分离得到123株单菌,根据菌落形态挑选出30个不同形态菌株,通过16S rRNA基因序列确定其种属,构建系统发育树;通过原油降解实验筛选出高效石油降解菌,以芳香烃的标志化合物萘为唯一碳源筛选出高效降解菌株,并分别筛选可降解水杨酸、邻苯二酚的菌株。【结果】分离筛选出5株高效石油降解菌,降解率高于85%;萘、水杨酸和邻苯二酚降解菌株各获得一株,将3种菌株按照1:1:1的接种比例对萘进行降解,萘的降解率从单菌60.74%提升到89.40%,菌株间的分工协作可以提高有机物的降解效率。【结论】筛选得到的菌株丰富了石油降解微生物菌种库,不同微生物菌株之间的分工协作为石油污染物的降解提供了新思路,为进一步研究石油污染治理提供参考。  相似文献   

2.
A culture collection of 110 indigenous Streptomyces strains originally isolated from saline farmlands (Punjab, Pakistan) using stringent methods was screened biologically and chemically to investigate their potential for the production of bioactive secondary metabolites. In a biological screening the crude extracts obtained from the culture broth of selected strains were analysed for their activity against a set of test organisms, including Gram-positive, Gram-negative bacteria, fungi and microalgae using the disk diffusion bioassay method. Additionally a cytotoxicity test was performed by means of the brine shrimp microwell cytotoxicity assay. In a chemical screening each of the crude extracts was analysed by TLC using various staining reagents and by HPLC-MS/MS measurements. The results depicted an impressive chemical diversity of crude extracts produced by these strains. The taxonomic status of the selected strains was confirmed by preliminary physiological testing and 16S rRNA gene sequencing.  相似文献   

3.
Among 25 crude oil-degrading bacteria isolated from a marine environment, four strains, which grew well on crude oil, were selected for more study. All the four isolated had maximum growth on 2.5% of crude oil and strain BC (Pseudomonas) could remove crude oil by 83%. The drop collapse method and microtiter assay show that this strain produces more biosurfactant, and its biofilm formation is higher compared to other strains. Bacterial adhesions to crude oil for strains CS-2 (Pseudomonas), BC, PG-5 (Rhodococcus) and H (Bacillus) were 30%, 46%, 10% and 1%, respectively. Therefore, strain H with a low production of biosurfactant and biofilm formation had showed the least growth on these compounds. PCR analysis of these four strains showed that all isolates had alk-B genes from group (III) alkane hydroxylase. All isolate strains could utilize cyclohexan, octane, hexadecane, octadecan and diesel fuel oil; however, the microtiter plate assay showed that strain BC had more growth, respiration and biofilm formation on octadecan.  相似文献   

4.
Abstract The distribution of oil-degrading microorganism in samples of surface water and sediment from North Eastern Japanese coastal waters was studied. Modified natural sea water (NSW) agar supplemented with emulsified crude oil (Arabian light, 5 g 1−1) was used to enumerate oil-degrading bacteria. In addition, filtered samples were inoculated into NSW broth containing weathered crude oil. Incubation was carried out at 20°C for 7–10 days. Populations of oil-degrading microorganisms ranged from 3–230 CFU 100 ml−1 in surface waters and 2.9 × 103 to 1.2 × 105 CFU g in sediment samples. Analysis of variance showed that oil-degraders were heterogenously distributed. Six mixed populations selected from 20 samples were studied to determine which of the constituent microflora were capable of crude oil biodegradation. Among 51 strains selected for identification, only 61% could be identified which formed 17 different bacterial species. Acinetobacter species (14 strains), Psychrobacter immobilis (9 strains) and Gram-positive cocci (10 strains) were the predominant types. Oil-degrading activity by various mixed populations (three each from water and sediment samples) was determined by using a conventional total weight reduction technique. Reduction in amount of various aliphatic and aromatic hydrocarbon substrates was verified using gas chromatography and high pressure liquid chromatography. Biodegradation of crude oil ranged from 35–58%. One mixed population of the sediment samples degraded more hydrocarbon (both aliphatic and aromatic) and the biodegradation of the aromatic hydrocarbon reached as high as 48%.  相似文献   

5.
Fifteen bacterial strains isolated from solid waste oil samples were selected due to their capacity of growing in the presence of hydrocarbons. The isolates were identified by PCR of the 16S rDNA gene using fD1 and rD1 primers. The majority of the strains belonged to genera Bacillus, Bacillus pumilus (eight strains) and Bacillus subtilis (two strains). Besides, three strains were identified as Micrococcus luteus, one as Alcaligenes faecalis and one strain as Enterobacter sp. Growth of the above-mentioned strains in mineral liquid media amended with naphthalene, phenanthrene, fluoranthene or pyrene as sole carbon source was studied and our results showed that these strains can tolerate and remove different polycyclic aromatic hydrocarbons that may be toxic in the environment polluted with hydrocarbons. Finally, the capacity of certain strains to emulsify octane, xilene, toluene, mineral oil and crude oil, and its ability to remove hydrocarbons, look promising for its application in bioremediation technologies.  相似文献   

6.
Halomonas eurihalina strains F2-7, H28, H96, H212 and H214 were capable of producing large amounts of exopolysaccharides (EPS) in MY medium with added crude oil. The biopolymers showed lower carbohydrate and protein content than those synthesised in control medium without oil. Nevertheless, the percentages of uronic acids, acetyls and sulphates were higher. The emulsifying activity of biopolymers was measured; crude oil was the substrate most efficiently emulsified. Furthermore, all the EPS tested emulsified higher volumes of crude oil than the commercial surfactants used as controls. We have also proved the effectiveness of both Halomonas eurihalina strains and their EPS to select indigenous bacteria able to grow in the presence of polycyclic aromatic hydrocarbons (naphthalene, phenanthrene and pyrene) from waste crude oil. The majority of isolated strains belonged to the genus Bacillus.  相似文献   

7.
A total of 96 crude oil-degrading bacterial strains were isolated from 5 geographically diverse sites in India that were contaminated with different types of petroleum hydrocarbons. The strains were identified by sequencing the genes that encode for 16S rRNA. Out of the 96 isolates, 25 strains were identified as Acinetobacter baumannii and selected for the study. All of the selected strains could degrade the total petroleum hydrocarbon fractions of crude oil. These 25 strains were biochemically profiled and grouped into 8 phenovars on the basis of multivariate analysis of their substrate utilization profiles. PCR-based DNA fingerprinting was performed using intergenic repetitive DNA sequences, which divided the selected 25 strains into 7 specific genomic clusters. tRNA intergenic spacer length polymorphism was performed to determine the intra-species relatedness among these 25 strains. It delineated the strains into 8 genomic groups. The present study detected specific variants among the A. baumannii strains with differential degradation capacities for different fractions of crude oil. This could play a significant role in in situ bioremediation. The study also revealed the impact of environmental factors that cause intra-species diversity within the selected strains of A. baumannii.  相似文献   

8.
《农业工程》2021,41(5):416-423
The use of microorganisms for remediation and restoration of hydrocarbons contaminated soils is an effective and economic solution. The current study aims to find out efficient telluric filamentous fungi to degrade petroleum hydrocarbons pollutants. Six fungal strains were isolated from used engine (UE) oil contaminated soil. Fungi were screened for their ability to degrade crude oil, diesel and UE oil using 2.6-dichlorophenol indophenol (DCPIP). Two isolates were selected, identified and registered at NCBI as Aspergillus ustus HM3.aaa and Purpureocillium lilacinum HM4.aaa. Fungi were tested for their tolerance to different concentration of petroleum oils using radial growth diameter assay. Hydrocarbons removal percentage was evaluated gravimetrically. The degradation kinetic of crude oil was studied at a time interval of 10 days. A.ustus was the most tolerant fungi to high concentration of petroleum oils in solid medium. Quantitative analysis showed that crude oil was the most degraded oil by both isolate; P. lilacinium and A. ustus removed 44.55% and 30.43% of crude oil, respectively. The two fungi were able to degrade, respectively, 27.66 and 21.27% of diesel and 14.39 and 16.00% of UE oil. As compared to the controls, these fungi accumulated high biomass in liquid medium with all petroleum oils. Likewise, crude oil removal rate constant (K) and half-lives (t1/2) were 0.02 day−1, 34.66 day and 0.015 day−1, 46.21 day for P. lilacinium and A. ustus, respectively. The selected fungi appear interesting for petroleum oils biodegradation and their application for soil bioremediation require scale-up studies.  相似文献   

9.
Aims: To study the bacterial diversity associated with hydrocarbon biodegradation potentiality and biosurfactant production of Tunisian oilfields bacteria. Methods and Results: Eight Tunisian hydrocarbonoclastic oilfields bacteria have been isolated and selected for further characterization studies. Phylogenetic analysis revealed that three thermophilic strains belonged to the genera Geobacillus, Bacillus and Brevibacillus, and that five mesophilic strains belonged to the genera Pseudomonas, Lysinibacillus, Achromobacter and Halomonas. The bacterial strains were cultivated on crude oil as sole carbon and energy sources, in the presence of different NaCl concentrations (1, 5 and 10%, w/v), and at 37 or 55°C. The hydrocarbon biodegradation potential of each strain was quantified by GC–MS. Strain C450R, phylogenetically related to the species Pseudomonas aeruginosa, showed the maximum crude oil degradation potentiality. During the growth of strain C450R on crude oil (2%, v/v), the emulsifying activity (E24) and glycoside content increased and reached values of 77 and 1·33 g l?1, respectively. In addition, the surface tension (ST) decreased from 68 to 35·1 mN m?1, suggesting the production of a rhamnolipid biosurfactant. Crude biosurfactant had been partially purified and characterized. It showed interest stability against temperature and salinity increasing and important emulsifying activity against oils and hydrocarbons. Conclusions: The results of this study showed the presence of diverse aerobic bacteria in Tunisian oilfields including mesophilic, thermophilic and halotolerant strains with interesting aliphatic hydrocarbon degradation potentiality, mainly for the most biosurfactant produced strains. Significance and Impact of the Study: It may be suggested that the bacterial isolates are suitable candidates for practical field application for effective in situ bioremediation of hydrocarbon‐contaminated sites.  相似文献   

10.
Towards efficient crude oil degradation by a mixed bacterial consortium   总被引:18,自引:0,他引:18  
A laboratory study was undertaken to assess the optimal conditions for biodegradation of Bombay High (BH) crude oil. Among 130 oil degrading bacterial cultures isolated from oil contaminated soil samples, Micrococcus sp. GS2-22, Corynebacterium sp. GS5-66, Flavobacterium sp. DS5-73, Bacillus sp. DS6-86 and Pseudomonas sp. DS10-129 were selected for the study based on the efficiency of crude oil utilisation. A mixed bacterial consortium prepared using the above strains was also used. Individual bacterial cultures showed less growth and degradation than did the mixed bacterial consortium. At 1% crude oil concentration, the mixed bacterial consortium degraded a maximum of 78% of BH crude oil. This was followed by 66% by Pseudomonas sp. DS10-129, 59% by Bacillus sp. DS6-86, 49% by Micrococcus sp. GS2-22, 43% by Corynebacterium sp. GS5-66 and 41% by Flavobacterium sp. DS5-73. The percentage of degradation by the mixed bacterial consortium decreased from 78% to 52% as the concentration of crude oil was increased from 1% to 10%. Temperature of 30 degrees C and pH 7.5 were found to be optima for maximum biodegradation.  相似文献   

11.
AIMS: The objective of this work was to study picocyanobacteria in the Arabian Gulf water in relation to oil pollution. METHODS AND RESULTS: Epifluorescent microscopic counting showed that offshore water samples along the Kuwaiti coast of the Arabian Gulf were rich in picocyanobacteria which ranged in numbers between about 1 x 10(5) and 6 x 10(5) ml(-1). Most dominant was the genus Synechococcus; less dominant genera were Synechocystis, Pleurocapsa and Dermocarpella. All isolates grew well in an inorganic medium containing up to 0.1% crude oil (w/v) and could survive in the presence of up to 1% crude oil. Hydrocarbon analysis by gas liquid chromatography (GLC) showed that representative strains of the four genera had the potential for the accumulation of hydrocarbons (the aliphatic n-hexadecane, aromatic phenanthrene and crude oil hydrocarbons) from aqueous media. Electron microscopy showed that the cells of these strains appeared to store hydrocarbons in their inter thylakoid spaces. Analysis by GLC of constituent fatty acids of total lipids and individual lipid classes from representative picoplankton strains grown in the absence and presence of hydrocarbons showed, however, that the fatty acid patterns were not markedly affected by the hydrocabon substrates, meaning that the test strains could not oxidize the accumulated hydrocarbons. CONCLUSION: The Arabian Gulf is among the water bodies of the world richest in picocyanobacteria. These micro-organisms accumulate hydrocarbons from the water body, but do not biodegrade these compounds. It is assumed that hydrocarbon-utilizing bacteria that were always found associated with all picocyanobacteria in nature may carry out the biodegradation of these compounds. SIGNIFICANCE AND IMPORTANCE OF THE STUDY: The results shed light on the potential role of picocyanobacteria in controlling marine oil pollution.  相似文献   

12.
Changes in mutagenicity during crude oil degradation by fungi   总被引:5,自引:0,他引:5  
Two fungal strains, Cunninghamella elegans and Penicillium zonatum, that grow with crude oil as a sole carbon source were exposed to three crude oils that exhibit a range of mutagenic activity. At regular time intervals following fungal incubation with the various crude oils, extracts were tested for the presence of mutagenic activity using the spiral Salmonella assay. When the most mutagenic of the oils, Pennsylvania crude oil, was degraded by C. elegans or by P. zonatum, its mutagenicity was significantly reduced; corresponding uninoculated (weathered) controls of Pennsylvania crude remained mutagenic. West Texas Sour crude oil, a moderately mutagenic oil, exhibited little change in mutagenicity when incubated with either C. elegans or P. zonatum. Swanson River Field crude oil from Cook Inlet, Alaska is a slightly mutagenic oil that became more mutagenic when incubated with C. elegans; weathered controls of this oil showed little change in mutagenicity. Mycelial mat weights measured during growth on crude oils increased corresponding to the biodegradation of about 25% of the crude oil.  相似文献   

13.
The six biosurfactant-producing strains, isolated from oilfield wastewater in Daqing oilfield, were screened. The production of biosurfactant was verified by measuring the diameter of the oil spreading, measuring the surface tension value and emulsifying capacity against xylene, n-pentane, kerosene and crude oil. The experimental result showed three strains (S2, S3, S6) had the better surface activity. Among the three strains, the best results were achieved when using S2 strain. The diameter of the oil spreading of the biosurfactant produced by S2 strain was 14 cm, its critical micelle concentration (CMC) was 21.8 mg/l and the interfacial tension between crude oil and biosurfactant solution produced by S2 strain reduced to 25.7 mN/m. The biosurfactant produced by S2 strain was capable of forming stable emulsions with various hydrocarbons, such as xylene, n-pentane, kerosene and crude oil. After S2 strain treatment, the reduction rate of oil viscosity was 51 % and oil freezing point reduced by 4 °C.  相似文献   

14.
The degrading action of an aquatic plant-microbial association on the base of Canadian pondweed (Elodea canadensis) and its components (sterilized plant and two periphytonic strains, Pseudomonas fluorescens E1-2.1 and Brevundimonas diminuta E1-3.1) on crude oil, the water-soluble crude oil fraction, and individual test compounds (phenol, toluene, benzene, decalin, and naphthalene) was studied. It was found that the native association had a wider range and higher degree of degrading activity than individual species. Bacterial strains were significantly more active only towards naphthalene. The ability of the sterilized plant to degrade crude oil and phenol was no less than that of microorganisms and much more for toluene. Enzymatic activity towards the pollutants studied was found in E. canadensis exudates and buffer extracts of its cells.  相似文献   

15.
Out of the 30 strains capable of oil degradation at 4-6 degrees C, four were selected by the ability to degrade 40% of the oil substrate present in the growth medium: Rhodococcus spp. DS-07 and DS-21 and Pseudomonas spp. DS-09 and DS-22. We studied the activity of these strains as degraders of oil products of various condensation degrees (crude oil, masut, petroleum oils, benzene resins and ethanol-benzene resins) at 4-6 degrees C. The maximum degrees of degradation of masut and ethanol-benzene resins were observed in Pseudomonas spp. DS-22 (17.2% and 5.2%, respectively). The maximum degradation of petroleum oils and benzene resins was observed in Rhodococcus spp. DS-07 (40% and 16.6%, respectively). The strains provide a basis for developing biodegrader preparations applicable to bioremediation of oil-polluted sites under the conditions of cold climate.  相似文献   

16.
Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3‐hydroxy‐4‐methoxybenzamide ( 9 ) and 2,3‐dihydro‐2,2‐dimethyl‐4(1H)‐quinazolinone ( 15 ) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine ( 2 ) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds.  相似文献   

17.
A total of 969 microbial strains were isolated from soil samples and tested to determine their lipolytic activity by employing screening techniques on solid and in liquid media. Ten lipase-producing microorganisms were selected and their taxonomic identification was carried out. From these strains Achremonium murorum, Monascus mucoroides, Arthroderma ciferri, Fusarium poae, Ovadendron sulphureo-ochraceum and Rhodotorula araucariae are described as lipase-producers for the first time. Hydrolysis activity of the crude lipases against both tributyrin and olive oil was measured. Heptyl oleate synthesis was carried out to test the activity of the selected lipases as biocatalysts in organic medium. All the selected lipases were tested as biocatalysts in several organic reactions using unnatural substrates. Lipases from the fungi Fusarium. oxysporum and O. sulphureo-ochraceum gave the best yields and enantioselectivities in the esterification of carboxylic acids. F. oxysporum and Penicillium chrysogenum lipases were the most active ones for the acylation of alcohols without steric hindrance. A. murorum lipase is very useful for the esterification of menthol. F. oxysporum and Fusarium. solani lipases were very stereoselective in the synthesis of carbamates.  相似文献   

18.
【背景】通过实施多轮次微生物采油,华北油藏产出液菌浓达到了106个/mL以上,油藏内部已经形成了较稳定的微生物发酵场,从其中筛选出能够乳化降解原油的微生物,并在地面对其进行扩大培养,然后再应用到微驱油藏,以进一步提高微生物采油实施效果。【目的】筛选乳化降解原油性能良好的菌株,对其进行多相分类学鉴定和性能评价。【方法】利用原油为底物筛选乳化降解性能良好的菌株,通过形态特征观察、生理生化测定、16S rRNA基因序列分析等确定菌株的分类地位。通过乳化能力、降解率等方法确定菌株的原油乳化降解特性。【结果】从华北油田采集的地层水样品中分离得到一株乳化原油的菌株BLG74,经多相分类鉴定表明其是土壤堆肥芽孢杆菌(Compostibacillus humi)的新菌株,亲源性99.6%。该菌株的生长温度为30-60℃ (最适温度45℃),pH6.5-9.5(最适pH7.0),NaCl浓度0%-7%(质量体积比)。菌株BLG74在玉米浆培养基中培养,其发酵液的表面张力为56.3 mN/m,乳化力约95%,在初始原油质量浓度0.5%、温度45℃的条件下培养20d,对原油的降解率可达40.8%。【结论】菌...  相似文献   

19.
The total of 98 strains of moulds were isolated from soils collected in arctic tundra (Spitzbergen). Among these strains Penicillium cyclopium 1, the most effective for production of catalase, was selected by the method of test-tube microculture. The time course of growth and catalase production by this strain showed the intracellular activity of this enzyme to be about 3-fold higher than its extracellular level Some properties of crude catalase preparation, isolated from postculture liquids by lyophilization, were also examined. Catalase activity showed its maximum at 15 degrees C, indicating adaptation of the enzyme to lower temperatures of the arctic environment.  相似文献   

20.
Petroleum and naphthalene (example of PAHs) degrading Streptomyces spp. isolates AB1, AH4, and AM2 were recovered from surface soils at Mitidja plain (North of Algeria). The degradation efficiencies were examined by HPLC and GC–MS analysis and the results showed that the biosurfactant producing isolates AB1, AH4 and AM2 could remove 82.36%, 85.23% and 81.03% of naphthalene after 12 days of incubation, respectively. During naphthalene degradation, a slight decrease in pH values was recorded for the three studied strains. Degradation metabolites were identified using GC–MS analysis of ethyl acetate extracts of the cell free-culture. The metabolism of degradation proceeds via the phthalic acid pathway for the three strains. Moreover, the selected strains showed an important degradation of the aliphatic fraction present in crude oil after 30 days of incubation. The finding suggests that the selected strains are suitable candidates for practical field application for effective in situ bioremediation of hydrocarbon-contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号