首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The base exchange enzymes catalyze the incorporation of L-serine, ethanolamine and choline into their corresponding phospholipids. The L-serine base enzyme activity was increased 120% by 0.1 mM sphingosine. There was a modest increase of the ethanolamine base exchange enzyme activity but the choline base exchange enzyme activity was unaffected. Na-arachadonate, Na-oleate and Na-linolenate at 0.2 mM concentration increased the activity of the L-serine and ethanolamine base exchange enzymes but inhibited the choline base exchange enzyme activity. A model is proposed suggesting that modulations of the L-serine base exchange enzyme may participate in the regulation of the calcium phospholipid-dependent protein kinase C.  相似文献   

2.
The membrane fraction of exponentially growing cells of Saccharomyces cerevisiae was found to exhibit phosphatidylserine synthase activity. The enzyme was solubilized by Triton X-100 and chromatographed on a Sepharose 6B column. The enzyme had a pH optimum between 8.0 and 8.5. The apparent Km values for CDPdiacylglycerol and L-serine were 0.12 and 13 mM, respectively. Triton X-100 stimulated the enzyme. Mg2+ or Mn2+ was required for the activity. Ca2+ was inhibitory at relatively low concentrations. The enzyme was highly specific to L-serine. Labeling experiments showed that the enzyme synthesized phosphatidylserine by transferring the phosphatidyl moiety to L-serine. A mutant of S. cerevisiae defective in phosphatidylserine synthase was isolated. The strain required ethanolamine for its growth. Ethanolamine could be substituted by choline or high concentrations of L-serine. The mutant showed normal levels of CDPdiacylglycerol-inositol 3-phosphatidyltransferase and phosphatidylethanolamine methyltransferase activities.  相似文献   

3.
Cultured dissociated cells from rat embryo cerebral hemisphere incorporate [3H]-and [U-14C]ethanolamine into cellular lipids. Nearly all radioactivity in the lipid fractions is incorporated into 1,2-diacylethanolamine phosphoglycerides and 1-alkenyl,2-acylethanolamine phosphoglycerides (plasmalogen). Kinetic data suggest that the rate of labeling of both ethanolamine phospholipids from the phosphorylethanolamine is similar. A relative increase of the plasmalogen labeling is observed when free ethanolamine is continually present in the medium. The rate of incorporation of label from ethanolamine and phosphorylethanolamine into lipids was measured using a double label technique. Based upon these studies, an independent labeling pattern of the ethanolamine moiety of plasmalogens is suggested. A relative delay for the incorporation of label in plasmalogens could be explained by the presence of a variety of cell types which may differ in their capacity for phospholipid biosynthesis. The rate of incorporation of phosphorylethanolamine into the phosphatidylethanolamine was not affected by the presence of high concentrations of either choline or serine.  相似文献   

4.
When radiolabeled serine is incubated with a particulate fraction from Saccharomyces cerevisiae, radioactivity is incorporated initially into phosphatidylserine and gradually appears in phosphatidylethanolamine. Because decarboxylation of phosphatidylserine is blocked by hydroxylamine, phosphatidylserine synthase can be assayed separately. The yeast phosphatidylserine synthase activity 1) exhibits a divalent cation requirement; 2) is stimulated by exogenous CDP-diolein (apparent Km = 0.17 mM); 3) has an apparent Km = 4 mM for L-serine; 4) has a neutral pH optimum; 5) is inhibited by p-hydroxymercuribenzoate; and 6) is reversible in the presence of 5'-CMP, but not 2'-CMP, 3'-CMP, or 5'-AMP. The phospholipid-synthesizing activity is solubilized with Triton X-100 and the enzymatic parameters have been compared with the particulate form of the enzyme. Detergent extracts catalyze the conversion of exogenous purified [31P]CDP-diglyceride to [32P]phosphatidylserine in the presence of Mn2+ and L-serine. Enzyme preparations from cells grown in the presence of choline, that have reduced phospholipid methylation activity (Waechter, C. J., Steiner, M. R., and Lester, R. L. (1969) J. Biol. Chem. 244, 3419-3422), also have substantially less phosphatidylserine synthase activity compared to identical preparations grown in the absence of choline. When choline, phosphocholine, CDP-choline, and phosphatidylcholine are present in vitro, there is no direct inhibitory effect on phosphatidylserine synthase activity. While the inclusion of choline in the growth medium caused a significant reduction in phosphatidylserine synthase activity, it did not appreciably effect the apparent Km values for L-serine and CDP-diglyceride. These results are consistent with choline-grown cells containing less phosphatidylserine synthase activity because of lower amounts of enzyme present or perhaps less active enzyme due to covalent modification.  相似文献   

5.
M L Ancelin  H J Vial 《FEBS letters》1986,202(2):217-223
In Plasmodium falciparum-infected erythrocyte homogenates, the specific activity of ethanolamine kinase (7.6 +/- 1.4 nmol phosphoethanolamine/10(7) infected cells per h) was higher than choline kinase specific activity (1.9 +/- 0.2 nmol phosphocholine/10(7) infected cells per h). The Km of choline kinase for choline was 79 +/- 20 microM, and ethanolamine was a weak competitive inhibitor of the reaction (Ki = 92 mM). Ethanolamine kinase had a Km for ethanolamine of 188 +/- 19 microM, and choline was a competitive inhibitor of ethanolamine kinase with a very high Ki of 268 mM. Hemicholinium 3 inhibited choline kinase activity, but had no effect on ethanolamine kinase activity. In contrast, D-2-amino-1-butanol selectively inhibited ethanolamine kinase activity. Furthermore, when the two enzymes were subjected to heat inactivation, 85% of the choline kinase activity was destroyed after 5 min at 50 degrees C, whereas ethanolamine kinase activity was not altered. Our results indicate that the phosphorylation of choline and ethanolamine was catalyzed by two distinct enzymes. The presence of a de novo phosphatidylethanolamine Kennedy pathway in P. falciparum contributes to the bewildering variety of phospholipid biosynthetic pathways in this parasitic organism.  相似文献   

6.
The Ca2+ dependent incorporation of [14C]ethanolamine, L-[14C]serine and [14C]choline into phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine, respectively, were investigated in membrane preparations from rat heart. The ethanolamine and serine base-exchange enzyme-catalyzed reactions were associated with the sarcolemma and sarcoplasmic reticulum. There was a 17.2-fold and 6.8-fold enrichment, respectively, of the serine and the ethanolamine base-exchange enzyme activities in the sarcolemma compared to the starting whole homogenate. The sarcoplasmic reticulum was enriched in the ethanolamine and serine base-exchange enzyme activities. The choline base-exchange enzyme activity of all membranes fractions was negligible compared to the ethanolamine or serine base-exchange enzyme activities. The apparent Km for the ethanolamine and serine base-exchange enzyme in sarcolemma was 14 microM and 25 microM, respectively. The pH optimum for these base-exchange activities was 7.5-8.0. There was a dependence upon Ca2+ for these reactions with a 1 or 4 mM concentration required for maximal activity. The properties of the sarcoplasmic reticulum base-exchange enzymes were similar to the sarcolemmal base-exchange enzymes.  相似文献   

7.
The effects of ethanolamine, choline, and different fatty acids on phospholipid synthesis via the CDP-ester pathways were studied in isolated rat intestinal villus cells. The incorporation of [14C]glucose into phosphatidylethanolamine was stimulated severalfold by the addition of ethanolamine and long-chained unsaturated fatty acids, while the addition of lauric acid inhibited the incorporation of radioactivity into phosphatidylethanolamine. At concentrations of ethanolamine higher than 0.2 mM, phosphoethanolamine accumulated, but the concentrations of CDP-ethanolamine and the incorporation of radioactivity into phospatidylethanolamine did not increase further. The incorporation of [14C]glucose into phosphatidylcholine responded in a way similar to that of phosphatidylethanolamine, except that a 10-fold higher concentration of choline was required for maximal stimulation. CCC inhibited the incorporation of choline into phosphatidylcholine. In contrast with hepatocytes, villus cells did not form phosphatidylcholine via phospholipid N-methylation. The data indicate that, in intestinal villus cells, the cytidylyltransferase reactions are rate limiting in the synthesis of phosphatidylethanolamine and probably also of phosphatidylcholine. The availability of diacylglycerol and its fatty acid composition may also significantly affect the rate of phospholipid synthesis.  相似文献   

8.
The calcium-dependent, energy-independent incorporations of 14C-labeled bases, choline, ethanolamine, and serine, into their corresponding membrane phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, were compared in microsomes and in subcellular fractions prepared from a lysed crude mitochondrial (P2) pellet of whole rat brain. When activities were measured in the presence of an extracellular (1.25 mM) concentration of Ca2+, recovered activities were highest in the microsomal fraction, although substantial activity remained associated with the P2 homogenate even after repeated washing of the pellet. When this washed P2 homogenate was subfractionated, enrichment of all three exchange activities was obtained only in a fraction that was fivefold enriched over the homogenate and sevenfold enriched over the microsomal fraction in Na+, K+-ATPase, a plasma membrane marker. This strongly suggests that the base-exchange enzymes are normal constituents of synaptosomal plasma membranes. The three exchange activities were measured in synaptosomes prepared from whole rat brain in the presence of various substrate (base) concentrations, and kinetic constants were calculated. The Vmax values for choline, ethanolamine, and serine exchange were, respectively, 1.27 +/- 0.09, 1.60 +/- 0.17, and 0.56 +/- 0.06 nmol/mg of protein/h; the respective Km (apparent) values were 241 +/- 29, 65 +/- 18, and 77 +/- 22 microM. Endogenous levels of the three bases, choline, ethanolamine, and serine, in whole (microwaved) rat brains were 20 +/- 8, 78 +/- 28, and 639 +/- 106 nmol, respectively. That ethanolamine and serine incorporations had lower Km values than choline incorporation suggests that these bases are preferentially incorporated into their respective phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The incorporation of serine and ethanolamine into phospholipids in rabbit retinal subcellular fractions and in excised retinas was studied in vitro, and some enzymic properties of the incorporation of phospholipid bases by base exchange were examined in the microsomal fraction. The retina was found to have a higher rate of base exchange for the incorporation of phospholipid bases than other tissues. The retinal microsomal fraction possessed the highest specific activity of base exchange, while the rod outer segment had very little activity. These results suggest that the phospholipids in the rod outer segment may be transferred from the inner segment of the photorecepter cell. The apparent Km values for serine and ethanolamine in the microsomal fraction decreased with decreasing Ca2+ concentration. Although no further increase of incorporation of serine and ethanolamine occurred after 40 min in the microsomal fraction, continuous incorporation of both bases into phospholipids was seen for 3 hr in excised retina. Illumination did not significantly affect the incorporation of serine and ethanolamine in excised retina or in the rod outer segment fraction. Base exchange reaction thus may not play a direct role in the visual process.  相似文献   

10.
Choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) has been isolated and purified 1000-fold from adult African Green monkey lung with a yield of 10%. The purified enzyme also phosphorylated ethanolamine (ratio of ethanolamine kinase to choline kinase = 0.30). This ratio remained constant throughout the purification procedure. The Km for choline (3.0 - 10(-5) M) was lower than that of ethanolamine (1.2 - 10(-3) M.) Choline was also found to inhibit ethanolamine kinase activity by 50% at a concentration of 0.005 mM, while ethanolamine inhibited choline only at very high concentrations (100--150 mM). When the enzyme was subjected to inactivation by heat, hemicholinium-3, trypsin digestion, and p-hydroxymercuribenzoate, both ethanolamine kinase and choline kinase activities were destroyed at the same rate. Freezing and thawing in the absence of glycerol also destroyed both activities at the same rate. Based on these findings, we conclude that in adult African Green monkey lung tissue, there is only one enzyme for the phosphorylation of ethanolamine and choline, and that choline phosphorylation predominates.  相似文献   

11.
Abstract— The calcium-dependent incorporation of l -[3-3H]serine and [1,2-14C]ethanol-amine into the phospholipid of isolated subcellular fractions from chick brain was studied and the properties of incorporation were examined. The microsomal fraction was found to possess the highest rate of incorporation and was able to convert under optimal conditions about 120 nmol of labelled serine and 220 nmol of ethanolamine/g of fresh brain microsomes/h. The requirement for Ca2+ ion appeared to be absolute. Mg2+ ion caused a gradual reduction in the existing enzymic activity, only when pre-incubated with microsomes and labelled bases before adding Ca2+ ion. The incorporation of serine and ethanolamine was actively inhibited by Hg2+, Co2+, Cu2+ and Mn2+ ions, and was abolished by ethylenediamine tetra-acetate treatment. Ethanolamine, but not choline, inositol or carnitine, competitively inhibited serine incorporation, while d -serine had slight effect. Conversely, l -serine inhibited competitively the incorporation of ethanolamine. The greater part of the incorporated serine (85 per cent) was localized in microsomal phosphatidylserine, while a small percentage was found in phosphatidylethanolamine. Similarly, 90 per cent of the incorporated ethanolamine was confined to phosphatidylethanolamine and a small percentage was found in the plasmalogen derivative. The mechanism of serine and ethanolamine incorporation was investigated. The results are compared with those published for similar mammalian and non-mammalian systems.  相似文献   

12.
1. A modified method for the analysis of phospholipid mixtures by selective hydrolysis is described. 2. The phospholipid compositions of normal human bone marrow and of the bone marrows of patients who died with anaemia or various forms of leukaemia were investigated. 3. Phospholipids from normal bone marrow comprised about 44% of lecithin, 4% of choline plasmalogen, 7% of glyceryl ether phospholipid (choline base), 10% of sphingomyelin, 22% of phosphatidylethanolamine plus phosphatidylserine, 8% of ethanolamine plasmalogen and 5% of glyceryl ether phospholipid (ethanolamine base). 4. The proportion of kephalin (i.e. phosphatidylethanolamine plus phosphatidylserine) in the pathological bone marrows tended to be lower than normal. No other consistent differences were observed between the normal and pathological samples. 4. A ceramide dihexoside was isolated from normal bone marrow.  相似文献   

13.
To investigate the relative turnover of esterified polyunsaturated fatty acids in diacylglycerophospholipids and plasmalogens in isolated cardiac myocytes, we characterized the phospholipid composition and distribution of radiolabel in different phospholipid classes and in individual molecular species of diradyl choline (CGP) and ethanolamine (EGP) glycerophospholipids after incubation of isolated cardiac myocytes with [3H]arachidonate or [14C]linoleate. Plasmalogens in CGP (55%) and EGP (42%) quantitatively accounted for the total plasmalogen content (39%) of cardiac myocyte phospholipids. Plasmalogens comprised 86% and 51% of total arachidonylated CGP and EGP mass, respectively, and [3H]arachidonate was primarily incorporated into plasmalogens in both CGP (65%) and EGP (61%) classes. The specificity activity of [3H]arachidonylated diacyl-CGP was approximately 2- to 5-fold greater than that of [3H]arachidonylated choline plasmalogen, whereas comparable specific activities were found in the [3H]arachidonate-labeled ethanolamine plasmalogen and diacyl-EGP pools. Of the total linoleate-containing CGP and EGP mass, 54% and 57%, respectively, was esterified to plasmalogen molecular species. However, [14C]linoleate was almost exclusively incorporated into diacyl-CGP (96%) and diacyl-EGP (86%). The specific activities of [14C]linoleate-labeled diacyl-CGP and diacyl-EGP were 5- to 20-fold greater than that of the [14C]linoleate-labeled plasmalogen pools. The differential incorporation of polyunsaturated fatty acids in plasmalogens and diacylglycerophospholipids demonstrates that the metabolism of the sn-2 fatty acyl moiety in these phospholipid subclasses is differentially regulated, possibly fulfilling separate and distinct physiologic roles.  相似文献   

14.
The activity of an ethanolamine and serine base exchange enzyme of rat brain microsomes was copurified to near homogeneity. The purification sequence involved detergent solubilization, Sepharose 4B column chromatography, phenyl-Sepharose 4B column chromatography, glycerol gradient sedimentation, and agarose-polyacrylamide gel electrophoresis under non-denaturing conditions. The ratio of the ethanolamine and serine base exchange activities remained almost constant during purification, and both enzyme activities were enriched 25-fold over the initial microsomal suspension. The final enzyme preparation which contained both enzyme activities showed a single protein band on sodium dodecyl sulfate-polyacrylamide gel, having an apparent molecular mass of about 100 kDa. Serine inhibited the ethanolamine incorporation by this preparation and ethanolamine inhibited the serine incorporation. The competitive nature of this inhibition was apparent from Lineweaver-Burk plots, suggesting that the enzyme catalyzes the incorporation of both ethanolamine and serine into their corresponding phospholipids. The Km and Ki values for ethanolamine were quite similar, being 0.02 and 0.025 mM, respectively. The Km and Ki values for serine were also quite similar being 0.11 and 0.12 mM, respectively. The pH optimum was the same at 7.0 with both substrates. The optimum Ca2+ concentration was 8 mM for serine incorporation.  相似文献   

15.
Phospholipid synthesis in aging potato tuber tissue   总被引:9,自引:8,他引:1       下载免费PDF全文
The effect of activation (“aging”) of potato tuber slices on their phospholipid metabolism was investigated. Aged slices were incubated with 14C labeled choline, ethanolamine, methionine, serine, and acetate. In all cases, the incorporation of radioactivity into the lipid fraction increased with the length of time the slices were aged. This incorporation was shown to be true synthesis and not exchange between precursors and existing phospholipids.

The increased incorporation of labeled choline into lipids was mainly due to an increase in its uptake by the tissue, the presence of actidione during aging prevented this increased uptake. The increase in the incorporation of labeled acetate into lipids resulted from the development of a fatty acid synthetase during aging. In the case of ethanolamine, both its uptake into the tissue and its incorporation into the lipid fraction increased.

The phospholipids formed from these precursors were identified by paper and thin-layer chromatography. The major compound formed from choline was lecithin, while phosphatidylethanolamine and a small amount of lecithin were formed from ethanolamine.

  相似文献   

16.
Transduction of extracellular signals through the membrane involves both the lipid and protein moiety. Phosphatidylserine participates to these processes as a cofactor for protein kinase C activity and thus the existence of a regulatory mechanism for its synthesis ought to be expected. In plasma membranes from rat cerebral cortex, the activity of serine base exchange enzyme, that is mainly responsible for phosphatidylserine synthesis in mammalian tissues, was reduced by the addition to the incubation mixture of AlF4- or GTP-g-S, known activators of G proteins, whereas ATP was almost uneffective. GTP-g-S inhibited the enzyme activity only at relatively high concentration (> 0.5 mM). When the synthesis of phosphatidylserine in the same cerebral area was investigated by measuring the incorporation of labelled serine into the phospholipid in the homogenate buffered at pH 7.6, ATP had an inhibitory effect as GTP-g-S and AlF4-. Heparin activated both serine base exchange enzyme in plasma membranes and phosphatidylserine synthesis.The preincubation of plasma membranes in the buffer without any other addition at 37øC for 15 min reduced by 30% serine base exchange enzyme activity. The remaining activity responded to the addition of GTP-g-S but was insensitive to 5 mM AlF4-, a concentration that inhibited by 60% the enzyme assayed without preincubation.These results indicate the existence of different regulatory mechanisms, involving ATP and G proteins, possibly acting on different enzymes responsible for the synthesis of phosphatidylserine. Since previous studies have shown that hypoxia increases the synthesis of this phospholipid in brain slices or homogenate (Mozzi et al. Mol Cell Biochem 126: 101-107, 1993), it is possible that hypoxia may interfere with at least one of these mechanisms. This hypothesis is supported by the observation that in hypoxic homogenate 20 mM AlF4- was not able to reduce the synthesis of phosphatidylserine as in normoxic samples. A similar difference between oxygenated and hypoxic samples, concerning their response to AlF4-, was observed when the incorporation of ethanolamine into phosphatidylethanolamine was studied. The incorporation of choline into phosphatidilcholine was, on the contrary, inhibited at a similar extent in both experimental conditions.  相似文献   

17.
The inhibition of brain choline kinase by hernicholinium-3   总被引:1,自引:0,他引:1  
Abstract— The calcium-dependent incorporation of choline, ethanolamine and L-serine into the phospholipids of isolated rat brain microsomes has been studied in vitro, and various properties of the incorporation have have been examined. The optimum pH for the incorporation of each base was found to vary inversely with the Ca2- concentration. Conversely, the optimal Ca2 + concentration for the exchange of the bases increased with decreasing pH values. The enzymic system for the incorporation of ethanolamine appeared to be saturated by two substrate concentrations, i.e. 0-2 and 1-7-2-0 mM. At low ethanolamine concentration (0-2 mM] much less incorporation of the base occurred into the alkenylacyl- and alkylacyl-derivatives of ethanolamine phosphoglycerides compared to that into the diacyl species, whereas the difference becomes smaller at a high substrate concentration (1-7 mM). At pH 81 and 2 mM-Ca2+ the apparent Km of ethanolamine at low substrate concentration was 80 × 10-5 M, and this value increased to 16-2 × 10-4.viat 10mM-Ca2+ concentration. At similar pH the Km values for choline and L-serine were 5.88 × 10-4M and 40 × 10-4 M at 2 mM- and 10mM-Ca2 + concentrations, respectively. The properties of the enzyme system show differences for the three substrates when various factors are changed during incubation. These and other results indicate that more than one enzyme is probably involved in the Ca2+-medialed exchange of nitrogenous bases.  相似文献   

18.
In rabbit platelet membranes, the contents of alkenylacyl phospholipids (plasmalogen) were 56% of phosphatidylethanolamine and 3% of phosphatidylcholine. This uneven distribution of plasmalogens in each phospholipid class could be attributed to the different substrate specificity of ethanolaminephosphotransferase (EC 2.7.8.1) and cholinephosphotransferase (EC 2.7.8.2). The properties of the enzymes were studied, using endogenous diglycerides and CDP-[3H]ethanolamine or CDP-[14C]choline as substrates. The newly formed phospholipids were mainly diacyl and alkenylacyl and only rarely alkylacyl type. The ratios of the labeled alkenylacyl to diacyl type of phospholipids clearly varied with the concentrations of CDP-ethanolamine or CDP-choline. When 1, 10, and 30 microM CDP-[3H]ethanolamine were used, the labeled phospholipids contained 53, 37, and 27% of the alkenylacyl type, respectively. The apparent Km for CDP-ethanolamine to synthesize alkenylacyl and diacyl types were 2.2 and 8.1 microM. On the other hand, when 1, 10, and 30 microM CDP-[14C]choline were used, the labeled lipids contained 10, 17, and 24% alkenylacyl type, respectively. The apparent Km for CDP-choline to synthesize alkenylacyl and diacyl types were 24 and 4.3 microM. Further, the syntheses of diacyl type of phosphatidylethanolamine and the alkenylacyl type of phosphatidylcholine were markedly inhibited by unlabeled CDP-choline and CDP-ethanolamine, respectively. The two enzymes had opposite substrate specificities, and ethanolaminephosphotransferase showed a high preference to plasmalogen synthesis, especially in the presence of CDP-choline.  相似文献   

19.
Base-exchange reactions of the phospholipids in cardiac membranes   总被引:1,自引:0,他引:1  
Canine cardiac microsomes were shown to incorporate the nitrogenous bases, serine, ethanolamine, and choline, into their respective phospholipids by the energy-independent, Ca2+-stimulated base-exchange reactions. The optimal Ca2+ concentration was 2.5 mM. Metal ions other than Ca2+ either inhibited or had no effect on the activities. La3+ and Mn2+ were both potent inhibitors. The pH optimum for the reactions at 2.5 mM Ca2+ was approx. 7.8 and depended upon Ca2+ concentration. Apparent Km values at 2.5 mM Ca2+ were 0.06 mM for L-serine, 0.13 mM for ethanolamine and 0.49 mM for choline. The kinetic and metal ion inhibition studies suggest that the choline-exchange reaction is a separate process from the serine and ethanolamine reactions. The ATP-stimulated Ca2+ binding system of the cardiac membranes was not related to the base-exchange reactions; however, the energy-independent Ca2+ binding to the membranes appears to be related to the exchange reactions.  相似文献   

20.
An in situ autoradiographic assay for CDP-ethanolamine:1,2-sn-diacylglycerol ethanolamine phosphotransferase (EC 2.7.8.1) activity in Chinese hamster ovary cells was developed and used to screen approximately 10,000 individual mutagen-treated colonies attached to filter paper (Esko, J. D., and Raetz, C. R. H. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 1190-1193). A variant (strain 40.11) was isolated in which the ethanolamine phosphotransferase specific activity in vitro was 6-10-fold less than in the parent, but the level of CDP-choline:1,2-sn-diacylglycerol choline phosphotransferase (EC 2.7.8.2) activity was normal. In extracts, the mutant was also defective in the synthesis of ethanolamine plasmalogen. In vivo, the short term kinetics of labeling with [32P]phosphate or [14C]ethanolamine was correspondingly altered. However, the long tem growth rate and steady state phospholipid compositions of the mutant and parent were quite similar. These results show that the ethanolamine and choline phosphotransferases of Chinese hamster ovary cells are distinct as judged by genetic criteria, while the biosynthesis of phosphatidylethanolamine and its plasmalogen share common enzymatic component(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号