首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of a plasma membrane cAMP-phosphodiesterase in cultured ovarian granulosa cells was regulated by follicle-stimulating hormone (FSH) and the gonadotropin-releasing hormone (GnRH) agonist [D-Ala6]des-Gly10-GnRH N-ethylamide (GnRHa). Degradation of cAMP was similar in cultures treated with FSH alone or FSH plus GnRHa when the labeled cyclic nucleotide was added from 24 to 42 h of culture. However, at 48 h and subsequent times of incubation, cAMP phosphodiesterase activity was significantly higher in cells incubated with FSH plus GnRHa. Phosphodiesterase activity was progressively increased by GnRHa concentrations between 10(-13) and 10(-10) M, and was maximally stimulated by 10(-9) M GnRHa. In comparison with control cells, FSH lowered the Vmax of cAMP catabolism by the high (1 microM cAMP substrate) and the low (50 microM) affinity phosphodiesterase, while GnRHa raised enzyme activity toward control levels. These actions of FSH and GnRHa were specific for a plasma membrane phosphodiesterase that was accessible to extracellular cAMP, since extracellular substrate was hydrolyzed, no intracellular uptake of [3H]cAMP was observed, and only a small fraction (10%) of cAMP was catabolized in the incubation medium in the absence of cells. Further, the actions of FSH and GnRHa on the membrane enzyme were the opposite of those observed when total phosphodiesterase activity was measured in cellular sonicates. Hormonal changes in phosphodiesterase activity were not due to leakage of the enzyme from damaged cells since a constant percentage of cAMP hydrolysis in the medium was observed during culture. Analysis of cAMP catabolites in granulosa cells indicated that the phosphodiesterase reaction product, 5'-AMP, was rapidly converted to adenosine by a plasma membrane 5'-nucleotidase, independent of the cellular hormonal status. These results indicate that the opposing actions of FSH and GnRHa upon granulosa cell differentiation include modulation of cAMP degradation at the plasma membrane level.  相似文献   

2.
Three new analogues of cAMP have been synthesized and characterized: 2-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic monophosphate (2-BDB-TcAMP), 2-[(3-bromo-2-oxopropyl)thio]-adenosine 3',5'-cyclic monophosphate (2-BOP-tcAMP), and 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic monophosphate (8-BDB-TcAMP). The bromoketo moiety has the ability to react with the nucleophilic side chains of several amino acids, while the dioxobutyl group can interact with arginine. These cAMP analogues were tested for their ability to inactivate the low Km (high affinity) cAMP phosphodiesterase from human platelets. The 2-BDB-TcAMP and 2-BOP-TcAMP were competitive inhibitors of cAMP hydrolysis by the phosphodiesterase with Ki values of 0.96 +/- 0.12 and 0.70 +/- 0.12 microM, respectively. However, 2-BDB-TcAMP and 2-BOP-TcAMP did not irreversibly inactivate the phosphodiesterase at pH values from 6.0 to 7.5 and at concentrations up to 10 mM. These results indicate that although the 2-substituted TcAMP analogues bind to the enzyme, there are no reactive amino acids in the vicinity of the 2-position of the cAMP binding site. In contrast, incubation of the platelet low Km cAMP phosphodiesterase with 8-BDB-TcAMP resulted in a time-dependent, irreversible inactivation of the enzyme with a second-order rate constant of 0.031 +/- 0.009 min-1 mM1. Addition of the substrates, cAMP and cGMP, and the product, AMP, to the reaction mixture resulted in marked decreases in the inactivation rate, suggesting that the inactivation was due to reaction at the active site of the phosphodiesterase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Incubation of homogenates of rat renal cortex at 4 degrees resulted in increased cAMP phosphodiesterase activity; the increase was much more rapid in hypotonic medium than in one of physiological tonicity. cAMP phosphodiesterase activity did not increase with incubation of supernatant fractions (48,000 x g, 20 min) prepared from isotonic homogenates. Extraction of the isotonic particulate fraction with hypotonic buffer released an activator which increased cAMP phosphodiesterase activity of the supernatant fraction. The kidney phosphodiesterase activator differed from a heat-stable, calcium-dependent protein activator of phosphodiesterase in that it was destroyed by heating (90 degrees for 10 min) and was not inhibited by EGTA. The phosphodiesterases of rat renal cortex were partially resolved by chromatography on DEAE-Bio-Gel, and a cAMP phosphodiesterase that is sensitive to the kidney activator was identified. This phosphodiesterase was separable from that affected by a calcium-dependent phosphodiesterase activator from bovine brain and from cGMP-stimulated cAMP phosphodiesterase. As determined by sucrose density gradient centrifugation, after incubation with the kidney activator, the activated form of phosphodiesterase had a lower sedimentation velocity than did the unactivated form.  相似文献   

4.
Theophylline, aminophylline, and isobutylmethylxanthine, compounds reported to be inhibitors of adenosine 3',5'-phosphate (cAMP) phosphodiesterase, prevented the alpha-factor-induced cell cycle arrest of Saccharomyces cerevisiae a cells. To determine whether the in vivo effect of these methylxanthines on yeast pheromone response was related to their known biochemical mode of action, two assays for cAMP phosphodiesterase based on affinity of the product of the reaction (5'-AMP) for boronate groups were developed and were used to monitor the activity of the low Km cAMP phosphodiesterase present in yeast extracts. It was found that the relative efficacy of the methylxanthines as inhibitors of this enzyme in vitro was correlated with the degree to which they antagonized alpha-factor action in vivo. These results were consistent with our previous proposal that pheromone action involves a lowering of cAMP level in the target cell.  相似文献   

5.
A modification of the zinc-barium precipitation method is described for the measurement of phosphodiesterase activity. This method differs from the previous precipitation method in that it measures the appearance of the 5'-AMP product in the precipitate rather than the disappearance of the cAMP substrate from the supernatant. The method is simple, rapid, accurate and possesses a high sensitivity. It can be used to measure both the calmodulin activatable and nonactivatable forms of the enzyme. The procedure can be applied to monitoring phosphodiesterase activity throughout the purification of the enzyme from various tissues.  相似文献   

6.
Different inhibitors of the Ca(2+)/calmodulin-stimulated phosphodiesterase 1 family have been described and used for the examination of phosphodiesterase 1 in cellular, organ or animal models. However, the inhibitors described differ in potency and selectivity for the different phosphodiesterase family enzymes, and in part exhibit additional pharmacodynamic actions. In this study, we demonstrate that phosphodiesterase 1C is expressed in the human glioblastoma cell line A172 with regard to mRNA, protein and activity level, and that lower activities of phosphodiesterase 2, phosphodiesterase 3, phosphodiesterase 4 and phosphodiesterase 5 are also present. The identity of the phosphodiesterase 1C activity detected was verified by downregulation of the mRNA and protein through human phosphodiesterase 1C specific small interfering RNA. In addition, the measured K(m) values (cAMP, 1.7 microm; cGMP, 1.3 microm) are characteristic of phosphodiesterase 1C. We demonstrate that treatment with the Ca(2+) ionophore ionomycin increases intracellular Ca(2+) in a concentration-dependent way without affecting cell viability. Under conditions of enhanced intracellular Ca(2+) concentration, a rapid increase in cAMP levels caused by the adenylyl cyclase activator forskolin was abolished, indicating the involvement of Ca(2+)-activated phosphodiesterase 1C. The reduction of forskolin-stimulated cAMP levels was reversed by phosphodiesterase 1 inhibitors in a concentration-dependent way. Using this cellular system, we compared the cellular potency of published phosphodiesterase 1 inhibitors, including 8-methoxymethyl-3-isobutyl-1-methylxanthine, vinpocetine, SCH51866, and two established phosphodiesterase 1 inhibitors developed by Schering-Plough (named compounds 31 and 30). We demonstrate that up to 10 microm 8-methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine had no effect on the reduction of forskolin-stimulated cAMP levels by ionomycin, whereas the more selective and up to 10 000 times more potent phosphodiesterase 1 inhibitors SCH51866, compound 31 and compound 30 inhibited the ionomycin-induced decline of forskolin-induced cAMP at nanomolar concentrations. Thus, our data indicate that SCH51866 and compounds 31 and 30 are effective phosphodiesterase 1 inhibitors in a cellular context, in contrast to the weakly selective and low-potency phosphodiesterase inhibitors 8-methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine. A172 cells therefore represent a suitable system in which to study the cellular effect of phosphodiesterase 1 inhibitors. 8-Methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine seem not to be suitable for the study of phosphodiesterase 1-mediated functions.  相似文献   

7.
An extract of rat liver or human platelet displayed three cyclic 3':5'-nucleotide phosphodiesterase activity peaks (I, II, and III) in a continuous sucrose density gradient when assayed with millimolar adenosine 3':5'-monophosphate (cAMP) or guanosine 3':5'-monophosphate (cGMP). The three fractions obtained from each nucleotide were not superimposable. The molecular weights corresponding to the three activity peaks of cAMP phosphodiesterase in rat liver were approximately: I, 22,000; II, 75,000; and III, 140,000. In both tissues, fraction I was barely detectable when assayed with micromolar concentrations of either nucleotide, presumably because fraction I has low affinity for cAMP and cGMP. Any one of the three forms upon recentrifugation on the gradient generated the others, indicating that they were interconvertible. The multiple forms appear to represent different aggregated states of the enzyme. The ratio of the three forms of cAMP phosphodiesterase in the platelet was shifted by dibutyryl cAMP (B2cAMP) and by the enzyme concentration. B2cAMP enhanced the formation of fraction I. Low enzyme concentration favored the equilibrium towards fraction I, while high enzyme concentration favored fraction III. When phosphodiesterase activities in the extract of rat liver, human platelets, or bovine brain were examined as a function of enzyme concentration, rectilinear rates were observed with micromolar, but not with millimolar cAMP or cGMP. The specific activity with millimolar cAMP was higher with low than with high protein concentrations, suggesting that the dissociated form catalyzed the hydrolysis of cAMP faster than that of the associated form. In contrast, the specific activity with millimolar cGMP was lower with low than with high protein concentrations. Supplementing the reaction mixture with bovine serum albumin to a final constant protein concentration did not affect the activity, suggesting that the concentration of the enzyme rather than that of extraneous proteins affected the enzyme activity. A change in enzyme concentration affected the kinetic properties of phosphodiesterase. A low enzyme concentration of cAMP phosphodiesterase yielded a linear Lineweaver-Burk plot, and a Km of 1.2 X 10(-4) M (bovine), 3 X 10(-5) M (platelet), or 5 X 10(-4) M (liver), while a high enzyme concentration yielded a nonlinear plot, and apparent Km values of 1.4 X 10(-4) M and 2 X 10(-5) M (brain), 4 X 10(-5) M and 3 X 10(-6) M (platelet), or 4 X 10(-5) M and 3 X 10(-6) (liver). Since a low enzyme concentration favored fraction I, the dissociated form, whereas a high enzyme concentration favored fraction III, the associated form, these kinetic constants suggest that the dissociated form exhibits a high Km and the associated form exhibits a low Km. In contrast, a high enzyme concentration gave a linear kinetic plot for cGMP phosphodiesterase, while a low enzyme concentration gave a nonlinear plot...  相似文献   

8.
Positive selection procedures for mutants of Salmonella typhimurium lacking cyclic 3', 5'7-adenosine monophosphate (cAMP) phosphodiesterase have been devised. The gene (cpd) coding for this enzyme has been located on the chromosome and shown to be 25% co-transducible with metC using phage P22. The mutants have been used to investigate the role of the enzyme in the control of genes whose expression is known to be dependent on cAMP. Significant alterations in the regulation of some but not others of these genes have been observed in these mutants. Mutants lacking the cAMP phosphodiesterase are more sensitive than their parents to a variety of antibiotics that appear to enter the cell through cAMP-dependent transport systems. They grow faster than the wild type on succinate-ammonia-salts, and glucose-proline-salts media and are inhibited by added cAMP on glucose, citrate, or glycerol-ammonia salts media whereas the wild type is unaffected. Neither the growth of Salmonella typhimurium on glycerol or citrate media nor the level of acid hexose phosphatase in the strain is affected by the loss of cAMP phosphodiesterase. In addition, the mutant strains are extremely sensitive to high levels of cAMP. Loss of the cAMP phosphodiesterase in strains unable to synthesize cAMP (adenyl cyclase negative) reduces by 10-fold the requirement for exogenous cAMP for expression of catabolite-sensitive phenotypes. These results suggest that through its control of cAMP levels in the cell the phosphodiesterase may be involved in the regulation of certain classes of catabolite-sensitive operaons and also in protecting the cell against high levels of cAMP.  相似文献   

9.
I Lemaire  P Coffino 《Cell》1977,11(1):149-155
Wild-type S49 lymphoma cells respond to cyclic adenosine 3', 5'-monophosphate (cAMP) by inducing cAMP phosphodiesterase, halting growth in the G1 phase of the cell cycle and subsequently dying. By using a counter selection procedure, we have isolated a new class of mutants of S49 cells termed "deathless" that are resistant to cytolysis, but otherwise respond like the wild-type cells to cAMP. Upon removal of the cyclic nucleotide, D-cells resume their normal growth. Unlike all other cAMP-resistant mutants of S49 cells isolated until now, the D- mutant has a functionally normal cAMP-dependent protein kinase and retains normal ability to induce phosphodiesterase and arrest cell growth in G1. It is probable that the altered gene product of the D- mutant is distal to protein kinase and in a biochemical pathway separate from that of cAMP induction of phosphodiesterase or growth arrest. The D- mutant may facilitate studies of the mechanism of cAMP-induced cytolysis and growth regulation in S49 cells.  相似文献   

10.
Refinement of a perfusion technique permitted the simultaneous measurement of cAMP-elicited [3H]cAMP secretion and intracellular [3H]cAMP levels in sensitive D. discoideum amoebae. These data were compared with measurements of the rate of [32P]cAMP synthesis by extracts of amoebae sonicated at different times during the cAMP signaling response. cAMP stimulation of intact cells led to a transient activation of adenylate cyclase, which was blocked if 10(-4) M NaN3 was added with the stimulus. During responses elicited by 10(-6) M cAMP, 10(-8) M cAMP, and an increment in cAMP from 10(-8) M to 10(-7) M, the rate of cAMP secretion was proportional to the intracellular cAMP concentration. Removal of a 10(-6) M cAMP stimulus 2 min after the initiation of the response led to a precipitous decline in intracellular cAMP. This decline was more rapid than could be accounted for by secretion alone, suggesting intracellular phosphodiesterase destruction of newly synthesized cAMP. Employing these data and a simple rate equation, estimates of the time-course of the transient activation of adenylate cyclase and the rate constants for cAMP secretion and intracellular phosphodiesterase activity were obtained. The calculated rate of cAMP synthesis rose for approximately 1 to 2 min, peaked, and declined to approach prestimulus levels after 3 to 4 min. This time-course agreed qualitatively with direct measurements of the time-course of activation, indicating that the activation of adenylate cyclase is a major in determining the time-course of the cAMP secretion response.  相似文献   

11.
The essential interactions between cAMP and the yeast low Km cAMP-phosphodiesterase have been analyzed using cAMP analogues and phosphodiesterase inhibitors. cAMP specificity is conferred by hydrogen bonding at the N-6 and N-7 positions. In contrast to the other yeast phosphodiesterase, (Rp)-adenosine 3',5'-monophosphorothioate is not hydrolyzed. Eleven standard phosphodiesterase inhibitors were not highly effective. In Chinese hamster ovary (CHO) cells that express the yeast cAMP-phosphodiesterase (PDE2) gene, cAMP levels cannot be raised by cholera toxin. cAMP analogues that are efficiently hydrolyzed by the yeast cAMP-phosphodiesterase had no effect on the growth of CHO cells that express the PDE2 gene, even though they block the growth and alter the morphology of control cells. cAMP analogues that are not hydrolyzed by the yeast enzyme inhibited the growth and changed the morphology of both control and PDE2 expressing CHO cells. We have developed a method for creating cell lines in which cAMP levels can be reduced by expression of an exogenous cAMP-phosphodiesterase gene. By employing cAMP analogues that are not hydrolyzed by this phosphodiesterase, the inhibitory effects of the enzyme can be bypassed.  相似文献   

12.
Since many isoforms of adenylyl cyclase and adenosine 3', 5'-monophosphate (cAMP) phosphodiesterase have been cloned, it is likely that receptors of each hormone have a specific combination of these isoforms. Types I, III and VIII adenylyl cyclases are reported to be stimulated by Ca(2+)-calmodulin, type I phosphodiesterase by Ca(2+)-calmodulin, but types IV and VII (cAMP-specific) phosphodiesterases by Co2+. In the present study, we examined different effects of Ca2+ and Co2+ on hormone-induced cAMP response in the isolated perfused rat liver.The removal of Ca2+ from the perfusion medium (0 mM CaCl(2 ) + 0.5 mM EGTA) did not affect glucagon (0.1 nM)-responsive cAMP but reduced secretin (1 nM)-, vasoactive intestinal polypeptide (VIP, 1-10 nM)- and forskolin (1 microM)-responsive cAMP considerably. The addition of 1 mM CoCl2 reduced glucagon- and secretin-responsive cAMP considerably, forskolin-responsive cAMP partly, did not affect 1 nM VIP-responsive cAMP, but enhanced 10 nM VIP-responsive cAMP. Forskolin- and VIP-responsive cAMP was greater in the combination (0 mM CaCl(2) + 0.5 mM EGTA + 3 mM CoCl2) than in the Ca(2+)-free perfusion alone.These results suggest that secretin, VIP1 and VIP2 receptors are linked to Ca(2+)-calmodulin-sensitive adenylyl cyclase; glucagon receptor to Ca(2+)-calmodulin-insensitive adenylyl cyclase; VIP1 receptor to Ca(2+)-calmodulin-dependent phosphodiesterase; glucagon, secretin and VIP2 receptors to cAMP-specific phosphodiesterase, respectively, in the rat liver.  相似文献   

13.
The effect of 3 prostaglandins (PG's) (I2, D2 and E1) on the adhesion of platelets to purified type III collagen has been investigated. A quantitative method for a specific evaluation of the adhesion has been applied and has revealed an inhibition of adhesion by low concentrations (10(-10)M) of PGs added before collagen; the effect varied as a function of the dose of PGs (maximum at 10(-6)M) which also induced an increase in the level of platelet cAMP. The inhibition of adhesion and the elevation of platelet cAMP followed the same time course and were either of short duration (rapid decrease in the induced effects after 15 and 45 seconds in the case of PGE1) or longer lasting (maximum effect maintained for 5 minutes in the case of PGI2 and D2). These effects were potentiated by a phosphodiesterase inhibitor such as theophylline (10(-3)M). The addition of PGs after collagen resulted in a reduction of the enhancement of cAMP, associated with a decrease in the inhibition of adhesion. Moreover, the addition of exogenous cAMP (dibutyryl N6-02' cAMP) induced a comparable inhibition. A correlation between the adhesion of platelets to collagen and the level of either endogenous or exogenous cAMP has been established. The PGs also inhibited the platelet release reaction from the alpha granules (beta TG) and the dense bodies. (5-HT and ADP). A greater inhibition of release than of adhesion was observed for the same doses of PGs added.  相似文献   

14.
The extreme sensitivity of chicken muscle fructose 1,6-bisphosphatase to inhibition by 5'-AMP has been utilized to develop a new method for the assay of cAMP phosphodiesterase activity. In this method, the substrate (cAMP) is first incubated with phosphodiesterase and the amount of 5'-AMP formed is then determined by measuring the degree of inhibition of fructose 1'6-bisphosphatase activity. The present method conveniently employs the spectrophotometric technique and is sensitive enough to detect the conversion of 50 pmol of cAMP to 5'-AMP in 1 ml of reaction mixture. This method is considered particularly valuable for those laboratories that are not equipped with facilities for measuring radioactivity.  相似文献   

15.
The prostaglandin endoperoxide PGH2 (15-hydroxy-9alpha, 11alpha-peroxidoprosta-5,13-dienoic acid), at a concentration of 2.8 x 10(-5) M inhibited basal adenylate cyclase activity 11% and epinephrine-stimulated activity 30 to 35%. PGH2 inhibited epinephrine-stimulated enzyme activity in the presence of 10 mM theophylline, 2.5 mM adenosine 3':5'-monophosphate (cAMP), or in the absence of inhibitors or substrates of the cAMP phosphodiesterase. When the cAMP phosphodiesterase was assayed directly using 62 nM and 1.1 muM cAMP, PGH2 did not affect the 100,000 x g particulate cAMP phosphodiesterase from fat cells. The inhibition of adenylate cyclase by PGH2 was readily reversible. A 6-min preincubation of ghost membranes with PGH2, followed by washing, did not alter subsequent epinephrine-stimulated adenylate cyclase activity. During epinephrine stimulation, the PGH2 inhibition was apparent on initial rates of cAMP synthesis, and the addition of PGH2 to the enzyme system at any point during an assay markedly reduced the rate of cAMP synthesis. Between 2.8 x 10(-7) M and 2.8 x 10(-5) M, PGH2 inhibited epinephrine-stimulated enzyme activity in a concentration-dependent manner. The stimulation of adenylate cyclase by thyroid-stimulating hormone, glucagon, and adrenocorticotropic hormone as well as by epinephrine was antagonized by PGH2, suggesting that PGH2 may be an endogenous feedback regulator of hormone-stimulated lipolysis in adipose tissue.  相似文献   

16.
Incubation of 3T3-L1 adipocytes with insulin or isoproterenol for 10 min increased particulate "low Km" cAMP phosphodiesterase activity by 42% and 50%, respectively. Pertussis toxin catalyzed the [32P]-ADP ribosylation of a 41,000 dalton protein in adipocyte particulate fractions; prior incubation of adipocytes with toxin markedly reduced incorporation of radiolabel. Exposure of adipocytes to pertussis toxin (0.3 microgram, 18 hr) increased glycerol production and inhibited activation of cAMP phosphodiesterase by insulin, but not by isoproterenol. These results suggest that pertussis toxin can interfere with receptor-mediated processes that stimulate cAMP hydrolysis as well as those that inhibit cAMP formation.  相似文献   

17.
Confluent 3T3-L1 fibroblasts incubated for 72 h with methylisobutylxanthine, dexamethasone, and insulin differentiate and acquire phenotypic characteristics of mature adipocytes, including hormone-sensitive cAMP phosphodiesterase activity located in a particulate fraction of homogenates. About 10 days after initiating differentiation, a maximally effective concentration of insulin (100 pM) increased particulate cAMP phosphodiesterase activity 40 to 60% in 8 min; activation persisted for at least 30 min in the presence of insulin. Incubation of adipocytes for 6-8 min with agents that increased cAMP, e.g. 1 microM epinephrine, 0.1 microM isoproterenol, corticotropin (2 mu units/ml), or thyroid-stimulating hormone (15 ng/ml), also increased particulate phosphodiesterase activity 40-60%. Changes in phosphodiesterase activity produced by epinephrine tended to lag behind changes in cAMP. Insulin, epinephrine, and corticotropin increased Vmax, not Km (0.5 microM), for cAMP. Particulate phosphodiesterase activity, solubilized with detergent, eluted in a single peak from DEAE-Bio-Gel. Insulin and epinephrine increased the activity eluted in this peak. Neither insulin nor lipolytic hormones increased activity in soluble fractions from differentiated cells or particulate or soluble fractions from undifferentiated cells. Incubation of adipocytes for 48 h with 1 microM dexamethasone prevented insulin-induced activation of the particulate phosphodiesterase and did not alter basal activity. After incubation for 72 h with 0.1 microM dexamethasone, insulin and epinephrine activation were abolished. These effects of dexamethasone on hormonal regulation of particulate phosphodiesterase activity could account for some of the so-called permissive effects of glucocorticoids on cAMP-mediated processes as well as the "anti-insulin" effects of glucocorticoids.  相似文献   

18.
19.
Affinity chromatography on a cAMP-specific phosphodiesterase inhibitor related to Rolipram, immobilized to AH Sepharose allowed to perform an efficient purification of the cAMP-specific phosphodiesterase isoenzyme from rat heart cytosol (102-fold purification with a 35% yield in a single step). This affinity chromatography involved a biospecific interaction since a 2 mM cAMP elution step at 30 degrees C was necessary for releasing the cAMP specific form tightly bound on the affinity gel. The cAMP eluate fraction exhibited a high specificity towards cAMP (cAMP/cGMP hydrolysis ratio 5-10), a marked sensitivity to Rolipram inhibition and could be resolved in two cAMP-specific, highly Rolipram-sensitive peaks of pI 6.7 and 4.8 by IEF on polyacrylamide gel plates. Protein stain of the IEF gel revealed a single band at pI 6.7.  相似文献   

20.
Cyclic nucleotide phosphodiesterase 10A (PDE10A) is a member of phosphodiesterase families that degrade cAMP and/or cGMP in distinct intracellular sites. PDE10A has a dual activity on hydrolysis of both cAMP and cGMP, and is prominently expressed in the striatum and the testis. Previous studies suggested that PDE10A is involved in regulation of locomotor activity and potentially related to psychosis, but concrete physiological roles of PDE10A remains elusive yet. In this study, we genetically inactivated PDE10A2, a prominent isoform of PDE10A in the brain, in mice, and demonstrate that PDE10A2 deficiency results in increased social interaction without any major influence on different other behaviors, along with increased levels of striatal cAMP. We also demonstrate that PDE10A2 is selectively distributed in medium spiny neurons, but not interneurons, of the striatal complex. Thus, our results establish a physiological role for PDE10A2 in regulating cAMP pathway and social interaction, and suggest that cAMP signaling cascade in striatal medium spiny neurons might be involved in regulating social interaction behavior in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号