首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative difference in polymeric architectures of dendrimer and linear bis(poly(ethylene glycol)) (PEG) polymer in conjugation with paclitaxel has been described. Paclitaxel, a poorly soluble anticancer drug, was covalently conjugated with PAMAM G4 hydroxyl-terminated dendrimer and bis(PEG) polymer for the potential enhancement of drug solubility and cytotoxicity. Both conjugates were characterized by 1NMR, HPLC, and MALDI/TOF. In addition, molecular conformations of dendrimer, bis(PEG), paclitaxel, and its polymeric conjugates were studied by molecular modeling. Hydrolysis of the ester bond in the conjugate was analyzed by HPLC using esterase hydrolyzing enzyme. In vitro cytotoxicity of dendrimer, bis(PEG), paclitaxel, and polymeric conjugates containing paclitaxel was evaluated using A2780 human ovarian carcinoma cells. Cytotoxicity increased by 10-fold with PAMAM dendrimer-succinic acid-paclitaxel conjugate when compared with free nonconjugated drug. Data obtained indicate that the nanosized dendritic polymer conjugates can be used with good success as anticancer drug carriers.  相似文献   

2.
Bombesin (BBN), a 14 amino acid peptide, is an analogue of human gastrin releasing peptide (GRP) that binds to GRP receptors (GRPr) with high affinity and specificity. The GRPr is overexpressed on a variety of human cancer cells, including prostate, breast, lung, and pancreatic cancers. The specific aim of this study was to develop (99m)Tc-radiolabeled BBN analogues that maintain high specificity for the GRPr in vivo. A preselected synthetic sequence via solid-phase peptide synthesis (SPPS) was designed to produce N(3)S-BBN (N(3)S = dimethylglycyl-l-seryl-l-cysteinylglycinamide) conjugates with the following general structure: DMG-S-C-G-X-Q-W-A-V-G-H-L-M-(NH(2)), where the spacer group, X = 0 (no spacer), omega-NH(2)(CH(2))(2)COOH, omega-NH(2)(CH(2))(4)COOH, omega-NH(2)(CH(2))(7)COOH, or omega-NH(2)-(CH(2))(10)COOH. The new BBN constructs were purified by reversed phase-HPLC (RP-HPLC). Electrospray mass spectrometry (ES-MS) was used to characterize the nonmetalated BBN conjugates. Re(V)-BBN conjugates were prepared by the reaction of Re(V)gluconate with N(3)S-X-BBN[7-14]NH(2) (X = 0 carbons, beta-Ala (beta-alanine), 5-Ava (5-aminovaleric acid), 8-Aoc (8-aminooctanoic acid), and 11-Aun (11-aminoundecanoic acid)) with gentle heating. Re-N(3)S-5-Ava-BBN[7-14]NH(2) was also prepared by the reaction of [Re(V)dimethylglycyl-l-seryl-l-cysteinylglycinamide] with 5-Ava-BBN[7-14]NH(2). ES-MS was used to determine the molecular constitution of the new Re(V) conjugates. The (99m)Tc conjugates were prepared at the tracer level by each the prelabeling, post-conjugation and pre-conjugation, postlabeling approaches from the reaction of Na[(99m)TcO(4)] with excess SnCl(2), sodium gluconate, and corresponding ligand. The (99m)Tc and Re(V) conjugates behaved similarly under identical RP-HPLC conditions. In vitro and in vivo models demonstrated biological integrity of the new conjugates.  相似文献   

3.
Low water solubility and rapid elimination from the brain inhibits local delivery via implants and other delivery systems of most therapeutic drugs to the brain. We have conjugated the chemotherapy drug, camptothecin (CPT), to poly(ethylene glycol) (PEG) of molecular weight 3400 using previously established protocols. These new conjugates are very water-soluble and hydrolyze at a pH-dependent rate to release the active parent drug. We have studied the uptake of these conjugates by cells in vitro and quantified their cytotoxicity toward gliosarcoma cells. These conjugates were loaded into biodegradable polymeric controlled-release implants, and their release characteristics were studied in vitro. We implanted similar polymeric disks into rat brains and used a novel sectioning scheme to determine the concentration profile of CPT in comparison to conjugated CPT in the brain after 1, 7, 14, and 28 days. We have found that PEGylation greatly increases the maximum achievable drug concentration and greatly enhances the distribution properties of CPT, compared to corelease of CPT with PEG. Although only one percent of CPT in the conjugate system was found in the hydrolyzed, active form, drug concentrations were still significantly above cytotoxic levels over a greater distance for the conjugate system. On the basis of these results, we believe that PEGylation shows great promise toward increasing drug distribution after direct, local delivery in the brain for enhanced efficacy in drug treatment.  相似文献   

4.
Bombesin (BBN) peptide exhibits high selectivity and affinity for the gastrin-releasing peptide receptor (GRPr). The GRPr is overexpressed on many human cancer cell types, thus making BBN a potent delivery vehicle for radionuclide targeting. In this study, the biologically active minimal sequence BBN(7-14) was labeled using the novel Tc '4 + 1' mixed-ligand system, [Tc(NS3)(CN-R)], in which Tc(III) is coordinated by a monodentate isocyanide linker bearing the peptide and the tetradentate, tripodal chelator, 2,2',2'-nitrilotriethanethiol (NS3). BBN(7-14) was N-terminally modified with Gly-Gly-Gly, betaAla, and Ser-Ser-Ser spacer groups (X) and functionalized with 4-(isocyanomethyl)benzoic acid (L1) or 4-isocyanobutanoic acid (L2), resulting in a series of [M(NS3)(L-X-BBN(7-14))] conjugates (M = 99mTc, Re). The isocyanide ligand frameworks were introduced using novel bifunctional coupling agents. The spacer groups (X), the monodentate isocyanide units, and a tetradentate NS3 chelator bearing a pendant carboxylic acid (NS3COOH) were proposed as pharmacological modifiers. 99mTc-labeling was performed in a two-step procedure by first preparing 99mTc-EDTA/mannitol followed by reactions with the isocyanides and NS3 or NS3COOH ligand frameworks. The 99mTc complexes were obtained with a radiochemical yield of 30-80% depending on the amount of the isocyanide (20-100 nmol) used. These new conjugates were purified by reversed-phased high-performance liquid chromatography (RP-HPLC) to give a radiochemical purity of >or=95%. The 99mTc conjugates exhibited high in vitro stability (>90%, 24 h). Analogous nonradioactive Re conjugates were synthesized and characterized by electrospray ionization mass spectrometry (ESI-MS). RP-HPLC analyses of the Re conjugates indicated that they exhibited identical retention times to the corresponding 99mTc conjugates under identical HPLC conditions, demonstrating structural similarity between the two metalated species. The [Re(NS3)(L-X-BBN(7-14))] conjugates exhibited GRPr affinity in the nanomolar range as demonstrated by in vitro competitive binding assays using PC-3 human prostate cancer cells. In vitro internalization/externalization assays indicated that approximately 65% of [99mTc(NS3)(L2-betaAla-BBN(7-14))] conjugate was either surface-bound or internalized in PC-3 cells. Cell-associated activity for all other 99mTc conjugates was below 20%. Biodistribution studies of [99mTc(NS3)(L-betaAla-BBN(7-14))], L = L1 or L2, in normal, CF-1 mice showed minimal accumulation in normal pancreas (a tissue expressing the GRPr in high density in rodent models) and rapid hepatobiliary elimination. Introduction of a carboxyl group onto the NS3 ligand framework had only minimal effects to increase renal excretion. Activity distribution and accumulation was highly dominated by the relatively lipophilic '4 + 1' complex unit.  相似文献   

5.
A series of four porphyrin-cobaltacarborane conjugates have been synthesized, containing three or four cobaltabisdicarbollide anions linked by O(CH(2)CH(2)O)(2) groups to the porphyrin macrocycle and one of them containing a HIV-1 Tat 48-60 peptide sequence linked via a low molecular weight poly(ethylene glycol) (PEG) spacer. The cellular uptake, cytotoxicity, and preferential sites of intracellular localization of the conjugates were evaluated in human HEp2 cells. All conjugates are nontoxic in the dark at the concentrations studied. Upon exposure to low light dose (1 J cm(-)(2)) only the porphyrin-cobaltacarborane-HIV-1 Tat 48-60 conjugate showed 30% inhibition of cell proliferation at a concentration of 10 microM. The cellular uptake was dependent on the number of carborane cages and was significantly enhanced by the presence of the cell penetrating peptide sequence HIV-1 Tat 48-60. All conjugates preferentially localized in the cell lysosomes.  相似文献   

6.
To investigate the effect of elongating base-pair (bp) recognition sequences, we synthesized N-methylpyrrole-N-methylimidazole (PI) polyamide conjugates with eight-bp recognition (3-5). The DNA alkylating activities of conjugates 3-5 were evaluated by high-resolution denaturing polyacrylamide gel electrophoresis with a 208-bp DNA fragment. Conjugates 3-5 showed high alkylating activities at nanomolar concentrations. We then addressed the following issue about PI conjugates. Generally, PI polyamide conjugates hardly dissolve in aqueous solution. To improve the aqueous solubility, by the introduction of hydrophilic groups, we synthesized PI polyamide conjugates that were modified with a seco-CBI moiety (6-11). Conjugates 9-11 that were modified by methoxypolyethylene glycol (PEG) 750 acquired moderate solubility and stability in aqueous solution. In addition, conjugates 10 and 11 had high cytotoxicity against A549 and DU145.  相似文献   

7.
PEGylation of cholecystokinin prolongs its anorectic effect in rats   总被引:2,自引:0,他引:2  
The anorectic compound CCK-9 was coupled to polyethylene glycol 5 kDa, 10 kDa, 20 kDa and 30 kDa, under different reaction conditions. Conjugates were purified by HPLC and characterized by MALDI-TOF MS. A 96% PEGylation yield was obtained in buffer pH 7.5 after 6h reaction at 20 degrees C. The anorectic activity was tested in vivo in rats. A single bolus intra-peritoneal injection of non-modified CCK-9 resulted in a significant initial food intake reduction 30 min after food presentation (87% compared to paired control group). When PEG-CCK-9 conjugates modified with polymers of molecular weight up to 20 kDa were injected, lower but statistically significant initial food intake reductions were obtained (76% for PEG 10 kDa-CCK-9 conjugate compared to control group). The cumulative food intake reduction of non-modified CCK-9 is normalized within 1-2h, whereas the PEG-CCK-9 molecules showed a prolonged anorectic activity lasting for 6h for PEG 5 kDa-CCK-9; 23 h for PEG 10 kDa-CCK-9 and between 8h and 23 h for PEG 20 kDa-CCK-9. For PEG 30 kDa-CCK-9 conjugate, neither an initial nor a cumulative FI reduction was observed. PEG-CCK-9 conjugates show a significantly prolonged anorectic activity in comparison to the non-modified peptide. This effect is most evident for the PEG 10 kDa-CCK-9 conjugate.  相似文献   

8.
Several bifunctional chelates (BFCs) were investigated as carriers of (64)Cu for PET imaging. The most widely used chelator for (64)Cu labeling of BFCs is DOTA (1,4,7,10-tetraazacyclododecane-N,N',N″,N'-tretraacetic acid), even though this complex exhibits only moderate in vivo stability. In this study, we prepared a series of alternative chelator-peptide conjugates labeled with (64)Cu, measured in vitro receptor binding affinities in human breast cancer T47D cells expressing the gastrin-releasing peptide receptor (GRPR) and compared their in vivo stability in mice. DOTA-, NOTA-(1,4,7-triazacyclononane-1,4,7-triacetic acid), PCTA-(3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid), and Oxo-DO3A-(1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid) peptide conjugates were prepared using H(2)N-Aoc-[d-Tyr(6),βAla(11),Thi(13),Nle(14)]bombesin(6-14) (BBN) as a peptide template. The BBN moiety was selected since it binds with high affinity to the GRPR, which is overexpressed on human breast cancer cells. A convenient synthetic approach for the attachment of aniline-BFC to peptides on solid support is also presented. To facilitate the attachment of the aniline-PCTA and aniline-Oxo-DO3A to the peptide via an amide bond, a succinyl spacer was introduced at the N-terminus of BBN. The partially protected aniline-BFC (p-H(2)N-Bn-PCTA(Ot-Bu)(3) or p-H(2)N-Bn-DO3A(Ot-Bu)(3)) was then coupled to the resulting N-terminal carboxylic acid preactivated with DEPBT/ClHOBt on resin. After cleavage and purification, the peptide-conjugates were labeled with (64)Cu using [(64)Cu]Cu(OAc)(2) in 0.1 M ammonium acetate buffer at 100 °C for 15 min. Labeling efficacy was >90% for all peptides; Oxo-DO3A-BBN was incubated an additional 150 min at 100 °C to achieve this high yield. Specific activities varied from 76 to 101 TBq/mmol. Competition assays on T47D cells showed that all BFC-BBN complexes retained high affinity for the GRPR. All BFC-BBN (64)Cu-conjugates were stable for over 20 h when incubated at 37 °C in mouse plasma samples. However, in vivo, only 37% of the (64)Cu/Oxo-DO3A complex remained intact after 20 h while the (64)Cu/DOTA-BBN complex was completely demetalated. In contrast, both (64)Cu/NOTA- and (64)Cu/PCTA-BBN conjugates remained stable during the 20 h time period. Our results indicate that it is possible to successfully conjugate aniline-BFC with peptide on solid support. Our data also show that (64)Cu-labeled NOTA- and PCTA-BBN peptide conjugates are promising radiotracers for PET imaging of many human cancers overexpressing the GRP receptor.  相似文献   

9.
A concise synthesis of long-chain poly(ethylene glycol) (PEG) of defined molecular weight up to 29 ethyleneoxy units is described. These PEG diols were converted in a two-step synthesis into Fmoc-protected PEG amino acids, suitable as long linkers and compatible with solid-phase peptide synthesis. Long PEG chains (MW > 1000) can be readily synthesized with this method, which has the advantage of defined single molecular weight products over the comparable commercial polymers. The application of these PEG linkers to the synthesis of peptide-PEG-folate conjugates on a solid support was investigated. A method for the solid support synthesis of the targeting component of the conjugate, folic acid-cysteine, was developed, resulting in improved yields with respect to literature methods. The assembly of the peptide, PEG linker, and targeting group on solid support resulted in the synthesis of a conjugate of defined molecular weight and structure.  相似文献   

10.
"Aged" organophosphoryl conjugates of serine hydrolases differ from the corresponding "non-aged" conjugates in their striking resistance to nucleophilic reactivation. The refined X-ray structures of "aged" and "non-aged" organophosphoryl conjugates of gamma-chymotrypsin were compared in order to understand the molecular basis for this resistance of "aged" conjugates. "Aged" and "non-aged" crystalline organophosphoryl-gamma-chymotrypsin conjugates were obtained by prolonged soaking of native gamma-chymotrypsin crystals with appropriate organophosphates. Thus, a representative "non-aged" conjugate, diethylphosphoryl-gamma-chymotrypsin, was obtained by soaking native crystals with paraoxon (diethyl-p-nitrophenyl phosphate), and a closely related "aged" conjugate, monoisopropyl-gamma-chymotrypsin, was obtained by soaking with diisopropylphosphorofluoridate. In both crystalline conjugates, the refined structures clearly reveal a high occupancy of the active site by the appropriate organophosphoryl moiety within covalent bonding distance of Ser195 O gamma. Whereas in the "non-aged" conjugate both ethyl groups can be visualized clearly, in the putative "aged" conjugate, as expected, only one isopropyl group is present. There is virtually no difference between the "aged" and "non-aged" conjugates either with respect to the conformation of the polypeptide backbone as a whole or with respect to the positioning of the side-chains within the active site. In the "aged" conjugate, however, close proximity (2.6 A) of the negatively charged phosphate oxygen atom of the dealkylated organophosphoryl group to His57 N epsilon 2 indicates the presence of a salt bridge between these two moieties. In contrast, in the "non-aged" conjugate the DEP moiety retains its two alkyl groups; thus, lacking a negative oxygen atom, it does not enter into such a charge-charge interaction and its nearest oxygen atom is 3.6 A away from His57 N epsilon 2. It is suggested that steric constraints imposed by the salt bridge in the "aged" conjugate lie at the basis of its resistance to reactivation.  相似文献   

11.
Antibody-drug conjugates are now of considerable interest and are recommended for the treatment of cancers. Linkers are having a crucial role in potency and efficacy of these drugs. Herein, for the first time, we have used a water-soluble poly-ethylene glycol based linker (succinimidyl-[(N-maleimido propionamido)-diethyleneglycol] [SM(PEG)2]) for lysine amide coupling of DM1 drug to trastuzumab considering evaluation of the effect of using a hydrophilic linker on physicochemical and biological properties of the resulting conjugate in comparison to the conjugate containing succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) linker, which has a relative hydrophobic nature. The physicochemical properties of synthesized conjugates were investigated in terms of drug to antibody ratio, size variants and free drug quantities. In vitro biological activity of trastuzumab-DM1 conjugates was assessed on breast cancer cell lines expressing different levels of HER2 using binding affinity, antiproliferative, apoptosis, and antibody-dependent cell-mediated cytotoxicity (ADCC) assays. Synthesized conjugate containing hydrophilic linker, showed higher drug to antibody ratio, no aggregated form and higher cellular toxicity in comparison to SMCC bearing conjugate. Binding affinity and ADCC potential of conjugates was not affected upon the usage of hydrophilic linker. In conclusion, application of SM(PEG)2 for coupling of DM1 to trastuzumab enhance desirable characteristics of the resulting conjugate.  相似文献   

12.
Two Zn-Pc-peptide conjugates bearing either a short linker or a long PEG-linker between the macrocycle and a bifunctional peptide containing the nucleoplasmin and HIV-1 Tat 48-60 sequences have been synthesized in order to increase the Pc cell-targeting ability and to evaluate the effect of the linker. The presence of the peptide chain increased the water solubility of the Pc macrocycle and, consequently, its fluorescence in aqueous solutions. The highest fluorescence quantum yields were observed at low pH (5.0) for both conjugates and were always higher for the conjugate bearing the short linker. Both conjugates were found to have low dark cytotoxicity toward human HEp2 cells (IC50 > 77 microM) but were highly phototoxic (IC50 < 2 microM at 1 J cm-2). The conjugate bearing the long PEG-linker accumulated the most within cells (26 times more than the unconjugated Zn-Pc), followed by the short linker conjugate (17 times more than the unconjugated Zn-Pc). Both conjugates were found to localized preferentially within the cell lysosomes.  相似文献   

13.
Covalent attachment of poly(ethylene glycol) (PEG) to therapeutic proteins has been used to prolong in vivo exposure of therapeutic proteins. We have examined pharmacokinetic, biodistribution, and biophysical profiles of three different tumor necrosis factor alpha (TNF) Nanobody-40 kDa PEG conjugates: linear 1 × 40 KDa, branched 2 × 20 kDa, and 4 × 10 kDa conjugates. In accord with earlier reports, the superior PK profile was observed for the branched versus linear PEG conjugates, while all three conjugates had similar potency in a cell-based assay. Our results also indicate that (i) a superior PK profile of branched versus linear PEGs is likely to hold across species, (ii) for a given PEG size, the extent of PEG branching affects the PK profile, and (iii) tissue penetration may differ between linear and branched PEG conjugates in a tissue-specific manner. Biophysical analysis (R(g)/R(h) ratio) demonstrated that among the three protein-PEG conjugates the linear PEG conjugate had the most extended time-average conformation and the most exposed surface charges. We hypothesized that these biophysical characteristics of the linear PEG conjugate accounts for relatively less optimal masking of sites involved in elimination of the PEGylated Nanobodies (e.g., intracellular uptake and proteolysis), leading to lower in vivo exposure compared to the branched PEG conjugates. However, additional studies are needed to test this hypothesis.  相似文献   

14.
Gastrin-releasing peptide (GRP) receptors are overexpressed on several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. Bombesin (BBN), a 14-amino acid peptide that is an analogue of human GRP, binds to GRP receptors with very high affinity and specificity. The aim of this study was to develop a new fluorescent probe based on BBN having high tumor uptake and optimal pharmacokinetics for specific targeting and optical imaging of human breast cancer tissue. In this study, solid-phase peptide synthesis was used to produce H(2)N-glycylglycylglycine-BBN[7-14]NH(2) peptide with the following general sequence: H(2)N-G-G-G-Q-W-A-V-G-H-L-M-(NH(2)). This conjugate was purified by reversed-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectra. The fluorescent probe Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) conjugate was prepared by reaction of Alexa Fluor 680 succinimidyl ester to H(2)N-G-G-G-BBN[7-14]NH(2) in dimethylformamide (DMF). In vitro competitive binding assays, using (125)I-Tyr(4)-BBN as the radiolabeling gold standard, demonstrated an inhibitory concentration 50% value of 7.7 +/- 1.4 nM in human T-47D breast cancer cells. Confocal fluorescence microscopy images of Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) in human T-47D breast cancer cells indicated specific uptake, internalization, and receptor blocking of the fluorescent bioprobe in vitro. In vivo investigations in SCID mice bearing xenografted T-47D breast cancer lesions demonstrated the ability of this new conjugate to specifically target tumor tissue with high selectivity and affinity.  相似文献   

15.
Chlorophyllide a was coupled with alpha-(3-aminopropyl)-omega-methoxypoly(oxyethylene) (PEG-NH2) to form a PEG-chlorophyllide conjugate through an acid-amide bond. The conjugate catalyzed the reduction of methylviologen in the presence of 2-mercaptoethanol. It also catalyzed the photoreduction of NADP+ or NAD+ in the presence of ascorbate as an electron donor and ferredoxin-NADP+ reductase as the coupling enzyme. Utilizing the reducing power of NADPH generated by PEG-chlorophyllide conjugate under illumination, glutamate was synthesized from 2-oxoglutarate and NH4+ in the presence of glutamate dehydrogenase. PEG-chlorophyllide conjugate was quite stable toward light illumination compared with chlorophyll a. The increase in the molecular weight of PEG in the PEG-chlorophyllide conjugates was accompanied by the enhancement of photostability of the conjugate and also by the increased solubility in the aqueous solution.  相似文献   

16.
The gastrin releasing peptide receptor (GRP-R) is overexpressed on a number of tumors and cancer cell lines including pancreas, prostate, breast, gastrointestinal, and small cell lung cancer (SCLC). Radiolabeled bombesin (BBN) analogues have exhibited high binding affinity and specificity to the GRP-R. A bombesin analogue with an antagonist targeting vector at the C-terminus, DOTA-aminohexanoyl-[D-Phe(6), Leu-NHCH 2CH 2CH3(13), des Met(14)] BBN[6-14] (1, "Bomproamide"), has been synthesized and displays high binding affinity (IC50 = 1.36 +/- 0.09 nM) against (125)I-Tyr (4)-BBN in in vitro competitive assays using PC-3 cells. Maximum internalization of (111)In-1 reached 14% in PC-3 cells after 45 min of incubation. Rapid (0.25 h PI) and high (12.21 +/- 3.2%ID/g) pancreatic uptake of (111)In-1 was observed in healthy CF-1 mice, and 90% of the activity was blocked by coinjection of 100 mug of BBN. Rapid (0.25 h PI) and high uptake (6.90 +/- 1.06%ID/g) was observed in PC-3 prostate cancer xenografts in SCID mice, as well as visualized clearly in a SPECT/CT study. These results support the use of a bombesin construct with an antagonist C-terminal vector as a candidate of choice for specific in vivo imaging of tumors overexpressing GRP-receptors.  相似文献   

17.
Shu JY  Lund R  Xu T 《Biomacromolecules》2012,13(6):1945-1955
Detailed structural characterization of protein-polymer conjugates and understanding of the interactions between covalently attached polymers and biomolecules will build a foundation to design and synthesize hybrid biomaterials. Conjugates based on simple protein structures are ideal model system to achieve these ends. Here we present a systematic structural study of coiled-coil peptide-poly(ethylene glycol) (PEG) side-conjugates in solution, using circular dichroism, dynamic light scattering, and small-angle X-ray scattering, to determine the conformation of conjugated PEG chains. The overall size and shape of side-conjugates were determined using a cylindrical form factor model. Detailed structural information of the covalently attached PEG chains was extracted using a newly developed model where each peptide-PEG conjugate was modeled as a Gaussian chain attached to a cylinder, which was further arranged in a bundle-like configuration of three or four cylinders. The peptide-polymer side-conjugates were found to retain helix bundle structure, with the polymers slightly compressed in comparison with the conformation of free polymers in solution. Such detailed structural characterization of the peptide-polymer conjugates, which elucidates the conformation of conjugated PEG around the peptide and assesses the effect of PEG on peptide structure, will contribute to the rational design of this new family of soft materials.  相似文献   

18.
beta-Cyclodextrin-poly(ethylene glycol)-folic acid conjugate (CD-PEG-FA) was synthesized according to a two-step procedure: (1). synthesis of CD-PEG-NH(2) by reaction of monotosyl-activated beta-cyclodextrin with excess of 700 Da diamino-PEG; (2). synthesis of CD-PEG-FA by reaction of CD-PEG-NH(2) with succinimidyl ester-activated folic acid. The CD-PEG-NH(2) intermediate was purified by precipitation in acetone, and the CD-PEG-FA by gel permeation and C-18 reversed-phase chromatography. Both CD-PEG-NH(2) and CD-PEG-FA were analyzed by mass spectrometry, (1)H NMR, and UV-vis spectroscopy. All analytical methods confirmed the theoretical composition of the conjugates: the CD-PEG-NH(2) intermediate was composed of CD and PEG in the molar ratio of 1:1, and the CD-PEG-FA was composed of beta-cyclodextrin, PEG, and folic acid in the molar ratio of 1:1:1. The CD-PEG-FA conjugate was highly soluble in buffer (>42 mM) as compared to the unmodified beta-cyclodextrin (16.3 mM). Phase solubility diagrams of beta-estradiol revealed that drug solubility increases from 11 microM in buffer to 600 microM in the presence of beta-cyclodextrins and 5900 microM with CD-PEG-FA. However, the affinity of beta-estradiol for beta-cyclodextrins decreased about 4 times with PEG and folic acid conjugation. Stability studies carried out using chlorambucil confirmed that the conjugate partially prevents drug degradation in buffer, although this effect was considerably lower than that obtained with beta-cyclodextrin. Computer modeling studies showed that the folic acid linked to the beta-cyclodextrins through a PEG spacer could partially interact with the cyclodextrin cavity. Finally, CD-PEG-FA displayed reduced hemolytic effect as compared to unmodified beta-cyclodextrin.  相似文献   

19.
This paper reports on the synthesis, safety, and efficacy of a series of water-soluble derivatives of poly(ethylene glycol) (PEG)-conjugated amphotericin B (AmB). PEG 40 000 attached to the sugar amino group of AmB via labile carbamate and carbonate linkages was examined. The synthetic program conducted for this investigation provided a series of disubstituted PEG-AmB derivatives which had in vitro PEG half-life of hydrolyses rates in rat plasma varying between 1 and 3 h. Importantly, all conjugates demonstrated less than 6% hydrolysis following 24 h incubation in pH 7.4 phosphate buffer at 25 degrees C and showed solubilities greater than 46 mg/mL in aqueous solutions. The solubility of AmB in the conjugates increased up to approximately 200 times compared to unmodified AmB in saline. As a major finding, this investigation demonstrated that conjugation of PEG to AmB could produce conjugates that were significantly (6x) less toxic than AmB-deoxycholate and maintained, or even had enhanced, in vivo antifungal activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号