首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To study gene expression patterns and to find genes related with microspore embryogenesis during pepper (Capsicum annuum L.) anther development, mRNA expression patterns were investigated at four developmental stages distinguished according to the size of flower bud, the color of anthers, and the cytological feature of microspores. Through GeneFishing using 120 random primers, 81 genes were found to be differentially expressed as anthers develop. We directly sequenced seven of them, which were either up- or down-regulated at stage 2, since microspores at stage 2 are known to be responsive to the induction signals for microspore embryogenesis. Nucleotide sequence analysis of the isolated differentially expressed genes (DEGs) and the comparison of these sequences with the GenBank data indicate that DEG13 is a novel gene, which is highly homologous to a stress-related gene of potato, POACT88 (≈91%) and to alcohol dehydrogenase gene of Arabidopsis (≈70%), whose expression is also tightly related to stresses. In vitro data also showed that DEG13 was more abundantly expressed in heat-treated microspores than in untreated microspores. Here, we report developmental stage-specific gene expression patterns during anther development and a novel stress-related gene, DEG13, which may be involved in microspore embryogenesis in response to heat treatment.  相似文献   

3.
4.
5.
The small heat shock proteins (sHsps), which are ubiquitous stress proteins proposed to act as chaperones, are encoded by an unusually complex gene family in plants. Plant sHsps are classified into different subfamilies according to amino acid sequence similarity and localization to distinct subcellular compartments. In the whole Arabidopsis thaliana genome, 19 genes were annotated to encode sHsps, of which 14 belong to previously defined plant sHsp families. In this paper, we report studies of the five additional sHsp genes in A. thaliana, which can now be shown to represent evolutionarily distinct sHsp subfamilies also found in other plant species. While two of these five sHsps show expression patterns typical of the other 14 genes, three have unusual tissue specific and developmental profiles and do not respond to heat induction. Analysis of intracellular targeting indicates that one sHsp represents a new class of mitochondrion-targeted sHsps, while the others are cytosolic/nuclear, some of which may cooperate with other sHsps in formation of heat stress granules. Three of the five new proteins were purified and tested for chaperone activity in vitro. Altogether, these studies complete our basic understanding of the sHsp chaperone family in plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
8.
9.
Abstract

In recent years a number of experimental findings have indicated that in higher plants the gametophytic phase is able to express its own genetic information, a large part of which it shares with the sporophytic generation. Quantitative estimates of haploid and haplodiploid gene expression have been obtained by mRNA and isozyme analysis in several plant species: 60-70% of the genes are expressed in both pollen and plant, about 10% are pollen-specific, and 20% represent the sporophytic domain. Moreover, it has been demonstrated that stage-specific genes are expressed in the gametophytic generation: at least two sets of genes are activated during pollen development, others are expressed only in the postshedding period, during germination and tube growth. Studies have been made to ascertain the role played by gametophyte-expressed genes in pollen development; the in vivo and in vitro pollen tube growth rate has been revealed to be controlled by the gametophyte genome itself. Differential effects of specific chromosomal deficiencies on the development of maize pollen grains have indicated that components of normal microspore development are controlled by genes located in specific parts of the genome. For single gene analysis, gene transfer can be used; on the contrary, for traits with a multifactorial genetic control, direct proof of gene expression both in the gametophytic and the sporophytic generation can be obtained when selection is applied to the pollen population of a hybrid plant, and response to selection is observed in the resulting sporophytic progeny. Response to selection, applied at different stages of the gametophytic phase, has been described in the sporophytic progeny and this with regard to many adaptive traits; thus the phenomenon can have an important bearing on the genetic structure of natural populations and on higher plant evolution, it can also be used as a breeding tool to increase the efficiency of conventional selection methods.  相似文献   

10.
11.
Studies were undertaken with one olive (Olea europaea L.) cultivar to identify buds with microspores competent to embryogenesis in vitro. Isolated microspore cultures were performed for the induction of gametic embryogenesis. Different pollen development stages and stress conditions (heat or cold shock) were evaluated. The correlation of inflorescence, anther morphology and the suitable stage of microspore development were analysed. The morphology of responsive buds was identified which corresponded with microspores from the late uni-nucleate to early bi-nucleate pollen stages. Symmetrical divisions of microspores as well as resulting multinucleate structures and pro-embryos were observed. In this paper, a new method of isolated microspore culture that leads to cell division and pro-embryos in olive, is reported.  相似文献   

12.
Aerobic fermentation during tobacco pollen development   总被引:1,自引:0,他引:1  
  相似文献   

13.
Hsu YF  Wang CS  Raja R 《Planta》2007,226(2):311-322
Although gene expression profile of pollen has been described, there is limited information regarding a particular phase during anther/pollen development. This work characterizes gene expression pattern at desiccation in lily (Lilium longiflorum Thunb. cv Snow Queen) anthers. We have applied a suppression-subtractive hybridization (SSH) strategy, through which 90 clones were identified and sequenced. These clones resulted in the identification of 42 individual cDNAs among which 33 genes were specifically expressed at the desiccation phase of anthers of >150-mm buds. Fourteen cDNAs were chosen for further examination. Six genes were both dehydration- and abscisic acid (ABA)-inducible whereas the other eight genes were apparently dehydration-irrelevant. The group of dehydration- and ABA-induced genes was also induced by desiccation that developmentally occurs in the anther. The application of fluridone has a significant effect of inhibition on mRNA accumulation of these genes in maturing anthers during which desiccation occurs. Pollen germination analysis indicated that, of those dehydration-irrelevant genes, three were ABA-responsive and the other five were not. Thus, three separate signal pathways that function in the activation of late genes at desiccation during anther development are established. The first is the ABA-dependent pathway induced by environmental stress of dehydration. The other two pathways of signaling triggered by developmental cues, through which one is ABA-dependent and another is ABA-independent. The 14 gene proteins showed spatial and temporal expression patterns and may participate in membrane/cell wall synthesis, cytoskeletal organization, signaling, RNA binding, ubiquitin-mediated degradation and transportation during germination and tube growth. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Summary Brassica napus cv. Topas microspores isolated and cultured near the first pollen mitosis and subjected to a heat treatment develop into haploid embryos at a frequency of about 20%. In order to obtain a greater understanding of the induction process and embryogenesis, transmission electron microscopy was used to study the development of pollen from the mid-uninucleate to the bicellular microspore stage. The effect of 24 h of high temperature (32.5 °C) on microspore development was examined by heat treating microspore cultures or entire plants. Mid-uninucleate microspores contained small vacuoles. Late-uninucleate vacuolate microspores contained a large vacuole. The large vacuole of the vacuolate stage was fragmented into numerous small vacuoles in the late-uninucleate stage. The late-uninucleate stage contained an increased number of ribosomes, a pollen coat covering the exine and a laterally positioned nucleus. Prior to the first pollen mitosis the nucleus of the lateuninucleate microspore appeared to be appressed to the plasma membrane; numerous perinuclear microtubules were observed. Microspores developing into pollen divided asymmetrically to form a large vegetative cell with amyloplasts and a small generative cell without plastids. The cells were separated by a lens-shaped cell wall which later diminished. At the late-bicellular stage the generative cell was observed within the vegetative cell. Starch and lipid reserves were present in the vegetative cell and the rough endoplasmic reticulum and Golgi were abundant. The microspore isolation procedure removed the pollen coat, but did not redistribute or alter the morphology of the organelles. Microspores cultured at 25 °C for 24 h resembled late-bicellular microspores except more starch and a thicker intine were present. A more equal division of microspores occurred during the 24 h heat treatment (32.5 °C) of the entire plant or of cultures. A planar wall separated the cells of the bicellular microspores. Both daughter cells contained plastids and the nuclei were of similar size. Cultured embryogenie microspores contained electron-dense deposits at the plasma membrane/cell wall interface, vesicle-like structures in the cell walls and organelle-free regions in the cytoplasm. The results are related to embryogenesis and a possible mechanism of induction is discussed.Abbreviations B binucleate - LU late uninucleate - LUV late uninucleate vacuolate - M mitotic - MU mid-uninucleate - RER rough endoplasmic reticulum - TEM transmission electron micrograph  相似文献   

15.
16.
Differential expression of genes is crucial to embryogenesis. The analysis of gene expression requires appropriate references that should be minimally regulated during the embryonic development. To select the most stable genes for gene normalization, the expression profiles of eight commonly used reference genes (ACTB, GAPDH, rpL17, α-Tub, EF1-α, UbcE, B2M, and 18S rRNA) were examined during Japanese flounder (Paralichthys olivaceus) embryonic development using quantitative real-time polymerase chain reaction. It was found that all seven mRNA genes appeared to be developmentally regulated and exhibited significant variation of expression. However, further analyses revealed the stage-specific expression stability. Hence when normalization using these mRNA genes, the differential and stage-related expression should be considered. 18S rRNA gene, on the other hand, showed the most stable expression and could be recommended as a suitable reference gene during all embryonic developmental stages in P. olivaceus. In summary, our results provided not only the appropriate reference gene for embryonic development research in P. olivaceus, but also possible guidance to reference gene selection for embryonic gene expression analyses in other fish species.  相似文献   

17.
 Until now it has been considered that in rape seed (Brassica napus) only late uninucleate microspores and early bicellular pollen are competent for induction of in vitro embryogenesis. Here we describe that pollen isolated at the late bicellular stage can also be induced to undergo embryogenesis. By the application of an additional short and more severe heat stress treatment, DNA synthesis was initiated in both generative and vegetative nuclei, but only vegetative cells were able to complete the cell cycle and to divide further. The ability of late bicellular pollen to respond to embryogenic induction treatment was accompanied by rearrangements of the microtubulular cytoskeleton and by the nuclear localization of 70 kDa heat shock proteins (HSP70). These findings confirm earlier observations that there is a strong correlation between the induction of embryogenesis and the synthesis and nuclear localization of HSP70. Received: 9 January 1997 / Revision accepted: 23 May 1997  相似文献   

18.
 PLIM-1 is a LIM domain protein specifically expressed in pollen grains. Using two PLIM-1-specific monoclonal antibodies we studied its expression and intracellular location at various developmental stages of sunflower (Helianthus annuus L.) pollen. Our studies show that the protein appears at the microspore stage in a limited number of cytoplasmic bodies, becomes undetectable in bicellular pollen, and reappears in tricellular pollen grains in cortical patches particularly concentrated in the F-actin-enriched germination cones of the vegetative cell. The developmental stage-dependent, different location of the protein suggests a dual function during pollen development. While this function in microspore development remains obscure, the high concentration of PLIM-1 in the germination cones of mature pollen suggests that it participates in the germination process as well as in pollen tube growth. Received: 11 August 1998 / Revision accepted: 15 December 1998  相似文献   

19.
20.
Reproduction in flowering plants is characterized by double fertilization and the resulting formation of both the zygotic embryo and the associated endosperm. In many species it is possible to experimentally deviate pollen development towards an embryogenic pathway. This developmental switch, referred to as microspore embryogenesis or androgenesis, leads to the formation of embryos similar to zygotic embryos. In a screen for genes specifically expressed during early androgenesis, two maize genes were isolated by mRNA differential display. Both genes represent new molecular markers expressed at a very young stage of androgenic embryogenesis. When their expression pattern was studied during normal reproductive development, both showed early endosperm-specific expression. Investigation of the cytological features of young androgenic embryos revealed that they present a partially coenocytic organization similar to that of early endosperm. These findings suggest that maize androgenesis may possibly involve both embryogenesis and the establishment of endosperm-like components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号