首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wu CT  Bradford KJ 《Plant physiology》2003,133(1):263-273
Class I chitinase (Chi9) and beta-1,3-glucanase (GluB) genes are expressed in the micropylar endosperm cap of tomato (Lycopersicon esculentum) seeds just before radicle emergence through this tissue to complete germination. In gibberellin (GA)-deficient mutant (gib-1) seeds, expression of Chi9 and GluB mRNA and protein is dependent upon GA. However, as expression occurs relatively late in the germination process, we investigated whether the genes are induced indirectly in response to tissue wounding associated with endosperm cap weakening and radicle protrusion. Wounding and methyl jasmonate (MeJA) induced Chi9 expression, whereas ethylene, abscisic acid, sodium salicylate, fusicoccin, or beta-aminobutyric acid were without effect. Chi9 expression occurred only in the micropylar tissues when seeds were exposed to MeJA or were wounded at the chalazal end of the seed. Expression of Chi9, but not GluB, mRNA was reduced in germinating seeds of the jasmonate-deficient defenseless1 tomato mutant and could be restored by MeJA treatment. Chi9 expression during germination may be associated with "wounding" from cell wall hydrolysis and weakening in the endosperm cap leading to radicle protrusion, and jasmonate is involved in the signaling pathway for this response. Among these treatments and chemicals (other than GA), only MeJA and wounding induced a low level of GluB expression in gib-1 seeds. However, MeJA, wounding, and particularly ethylene induced both genes in leaves, whereas GA induced only Chi9 in leaves. Although normally expressed simultaneously during tomato seed germination, Chi9 and GluB genes are regulated distinctly and tissue specifically by hormones and wounding.  相似文献   

2.
The coordinated induced expression of beta-oxidation genes is essential to provide the energy supply for germination and postgerminative development. However, very little is known about other functions of beta-oxidation in nonreserve organs. We have identified a gene-specific pattern of induced beta-oxidation gene expression in wounded leaves of Arabidopsis. Mechanical damage triggered the local and systemic induction of only ACX1 among acyl-coenzyme A oxidase (ACX) genes, and KAT2/PED1 among 3-ketoacyl-coenzyme A thiolase (KAT) genes in Arabidopsis. In turn, wounding induced KAT5/PKT2 only systemically. Although most of the beta-oxidation genes were activated by wound-related factors such as dehydration and abscisic acid, jasmonic acid (JA) induced only ACX1 and KAT5. Reduced expression of ACX1 or KAT2 genes, in transgenic plants expressing their corresponding mRNAs in antisense orientation, correlated with defective wound-activated synthesis of JA and with reduced expression of JA-responsive genes. Induced expression of JA-responsive genes by exogenous application of JA was unaffected in those transgenic plants, suggesting that ACX1 and KAT2 play a major role in driving wound-activated responses by participating in the biosynthesis of JA in wounded Arabidopsis plants.  相似文献   

3.
The biosynthesis of jasmonic acid (JA) in plant peroxisomes requires the action of acyl-coenzyme A oxidase (ACX). Among the five expressed members (ACX1-5) of the ACX gene family in Arabidopsis (Arabidopsis thaliana), only ACX1 is known to serve a role in JA production. Here, we used transgenic promoter-reporter lines to show that ACX1 is highly expressed in mature and germinating pollen, stem epidermal cells, and other tissues in which jasmonate-signaled processes occur. Wound-induced JA accumulation was reduced in a mutant that is defective in ACX1 and was abolished in a mutant that is impaired in both ACX1 and its closely related paralog, ACX5. The severe JA deficiency in acx1/5 double mutants was accompanied by decreased resistance to the leaf-eating insect Trichoplusia ni. The double mutant also showed reduced pollen viability and fecundity. Treatment of acx1/5 plants with JA restored both protection against T. ni larvae and normal seed set. Unexpectedly, acx1/5 plants accumulated JA in response to infection by the necrotrophic fungal pathogen Alternaria brassicicola. In contrast to mutants that are impaired in jasmonate perception or early steps of the JA biosynthetic pathway, acx1/5 plants maintained resistance to A. brassicicola infection. These results indicate that ACX1/5-mediated JA synthesis is essential for resistance to chewing insects and male reproductive function and further suggest that other ACX isozymes contribute to JA production in response to A. brassicicola challenge. Thus, different types of biotic stress may induce JA synthesis via distinct enzymatic routes.  相似文献   

4.
Two aspartic proteinase (AP) cDNA clones, WAP1 and WAP2, were obtained from wheat seeds. Proteins encoded by these clones shared 61% amino acid sequence identity. RNA blotting analysis showed that WAP1 and WAP2 were expressed in both germinating and maturing seeds. The level of WAP2 mRNA expression was clearly weaker than that of WAP1 in all tissues of seeds during germination and maturation. APs purified from germinating seeds were enzymatically active and digested the wheat storage protein, gluten. To elucidate the physiological functions of WAP1 and WAP2 in seeds, we investigated the localisation of WAP1 and WAP2 by in situ hybridisation. In germinating seeds investigated 24h after imbibition, both WAP1 and WAP2 were expressed in embryos, especially in radicles and shoots, scutellum, and the aleurone layer. In maturing seeds, WAP1 was expressed in the whole embryo, with slightly stronger expression in radicles and shoots. WAP1 was also expressed in the aleurone layer 3 weeks after flowering. Strong signals of WAP1 mRNA were detected in the whole embryo and aleurone layer 6 weeks after flowering. On the other hand, WAP2 was scarcely detected in seeds 3 weeks after flowering, and thereafter weak signals began to appear in the whole embryo. WAP1 and WAP2 were expressed widely in germinating and maturing seeds. Such diversity in site- and stage-specific expression of the two enzymes suggests their differential functions in wheat seeds.  相似文献   

5.
6.
Jasmonic acid (JA) is a lipid-derived signal that regulates plant defense responses to biotic stress. Here, we report the characterization of a JA-deficient mutant of tomato (Lycopersicon esculentum) that lacks local and systemic expression of defensive proteinase inhibitors (PIs) in response to wounding. Map-based cloning studies demonstrated that this phenotype results from loss of function of an acyl-CoA oxidase (ACX1A) that catalyzes the first step in the peroxisomal beta-oxidation stage of JA biosynthesis. Recombinant ACX1A exhibited a preference for C12 and C14 straight-chain acyl-CoAs and also was active in the metabolism of C18 cyclopentanoid-CoA precursors of JA. The overall growth, development, and reproduction of acx1 plants were similar to wild-type plants. However, the mutant was compromised in its defense against tobacco hornworm (Manduca sexta) attack. Grafting experiments showed that loss of ACX1A function disrupts the production of the transmissible signal for wound-induced PI expression but does not affect the recognition of this signal in undamaged responding leaves. We conclude that ACX1A is essential for the beta-oxidation stage of JA biosynthesis and that JA or its derivatives is required both for antiherbivore resistance and the production of the systemic wound signal. These findings support a role for peroxisomes in the production of lipid-based signaling molecules that promote systemic defense responses.  相似文献   

7.
8.
9.
10.
Multiple mode regulation of a cysteine proteinase gene expression in rice   总被引:9,自引:0,他引:9  
Ho SL  Tong WF  Yu SM 《Plant physiology》2000,122(1):57-66
In many plants, cysteine proteinases play essential roles in a variety of developmental and physiological processes. In rice (Oryza sativa), REP-1 is a primary cysteine proteinase responsible for the digestion of seed storage proteins to provide nutrients to support the growth of young seedlings. In the present study, the gene encoding REP-1 was isolated, characterized, and designated as OsEP3A. An OsEP3A-specific DNA probe was used to study the effect of various factors on the expression of OsEP3A in germinating seeds and vegetative tissues of rice. The expression of OsEP3A is hormonally regulated in germinating seeds, spatially and temporally regulated in vegetative tissues, and nitrogen-regulated in suspension-cultured cells. The OsEP3A promoter was linked to the coding sequence of the reporter gene, gusA, which encodes beta-glucuronidase (GUS), and the chimeric gene was introduced into the rice genome. The OsEP3A promoter is sufficient to confer nitrogen regulation of GUS expression in suspension-cultured cells. Histochemical studies also indicate that the OsEP3A promoter is sufficient to confer the hormonal regulation of GUS expression in germinating seeds. These studies demonstrate that in rice the REP-1 protease encoded by OsEP3A may play a role in various physiological responses and processes, and that multiple mechanisms regulate the expression of OsEP3A.  相似文献   

11.
Kato H  Sutoh K  Minamikawa T 《Planta》2003,217(4):676-685
We previously showed that two major cysteine endopeptidases, REP-1 and REP-2, were present in germinated rice ( Oryza sativa L.) seeds, and that REP-1 was the enzyme that digests seed storage proteins. The present study shows that REP-2 is an asparaginyl endopeptidase that acts as an activator of REP-1, and we separated it into two forms, REP-2alpha (39 kDa) and REP-2beta (40 kDa), using ion-exchange chromatography and gel filtration chromatography. Although analysis of the amino terminals revealed that 10 amino acids of both forms were identical, their isoelectric points were different. SDS-PAGE/immunoblot analysis using an antiserum raised against legumain, an asparaginyl endopeptidase from jack bean, indicated that both forms were present in maturing and germinating rice seeds, and that their amounts transiently decreased in dry seeds. Northern blot analysis indicated that REP-2 mRNA was expressed in both maturing and germinating seeds. In germinating seeds, the mRNA was detected in aleurone layers but not in shoot and root tissues. Incubation of the de-embryonated seeds in 10(-6) M gibberellic acid induced the production of large amounts of REP-1, whereas REP-2beta levels declined rapidly. Southern blot analysis showed that there is one gene for REP-2 in the genome, indicating that both REP-2 enzymes are generated from a single gene. The structure of the gene was similar to that of beta-VPE and gamma-VPE isolated from Arabidopsis thaliana.  相似文献   

12.
13.
14.
棉纤维蔗糖合酶基因SS3在棉纤维发育过程中起着重要作用.采用YADE技术克隆了该基因5′上游1717bp的调控区,该调控区含有典型的启动子核心元件TATA box ,以及TATC box、G box、GCN4 -motif、Prolamin box、Skn 1 likemotif、TCA element、HSE和O2 site等各种顺式调控元件和其他一些反应元件.将此序列和报告基因GUS融合在烟草、棉花中表达.组织化学分析结果显示棉花SuSyR序列启动GUS基因在烟草的子房、胎座、种子以及在棉花花蕾与棉铃中表达.在棉花花蕾蕾长为3mm、6mm、9mm和15mm花蕾中表达主要存在于雄蕊及雄蕊管、胎座等器官;在棉铃中,1DPA棉铃的花柱、花药、子房及胚珠中出现了蓝色,6DPA棉铃的子房及胚珠被染成蓝色,在2 0DPA的棉铃中蓝色只出现在胚珠及其纤维中、在胚珠中只有珠心被染成蓝色,在4 0DPA胚珠中只有纤维呈蓝色.研究结果揭示,棉花的SuSyR调控序列启动GUS基因主要在子房、胚珠和纤维等器官和主叶脉、茎微管束等输导组织中表达,在棉花中尤为明显,表明棉纤维蔗糖合酶基因SS3除参与棉花蕾铃发育、纤维素的合成外,还参与了光合产物的运输与分配过程.  相似文献   

15.
The first committed step in the -oxidation of fatty acids is catalyzed by the enzyme acyl-CoA oxidase (ACOX), which oxidizes a fatty acyl-CoA to a 2-trans-enoyl-CoA. To understand the role of -oxidation during seedling growth in soybean, two ACOX cDNAs were isolated by screening a seedling library with a DNA fragment obtained by RT-PCR by using degenerate oligonucleotides. The two cDNAs (ACX1;1 and ACX1;2) are 86% identical to each other at the nucleotide and the amino acid level. Their deduced amino acid sequences share significant homology with known acyl-CoA oxidases, including the conserved CGGHGY motif, a putative flavin mononucleotide binding site. In both sequences, the last three amino acids, ARL, represent a putative peroxisome targeting signal. The mRNA and protein of both cDNAs accumulated in all seedling tissues, with relatively stronger expression in the growing seedling axis and hypocotyl, and weaker expression in the cotyledon. Immunolocalization studies indicated that the two proteins were localized in the phloem cells of hypocotyl tissue. The two cDNAs were expressed in Escherichia coli and shown to possess acyl-CoA oxidase activity. With fatty acyl-CoA substrates of varying chain lengths, it was demonstrated that both ACX1;1 and ACX1;2 have broad substrate specificities (C8–C18). The stronger expression of ACX1;1 and ACX1;2 in the axis and hypocotyl tissue, the weaker expression in the oil-rich cotyledon tissue, and the broad substrate specificities suggest that the two acyl-CoA oxidases might play a general house-keeping role during soybean seedling growth, such as the turnover of membrane lipids.  相似文献   

16.
17.
A barley ( Hordeum vulgare L.) full-length clone coding for long chain acyl-CoA oxidase (ACX), key enzyme of β -oxidation, was isolated by cDNA library screening and 5'-rapid amplification of cDNA ends. The cDNA encodes for a polypeptide of 667 amino acids, with a molecular mass of 74.5 kDa. The amino acid sequence, beside an extensive similarity with other plant and mammalian ACXs, showed a PTS1 peroxisomal targeting signal at the C terminus and a conserved FAD-binding domain. The gene was over-expressed in E. coli and the fusion protein was shown to possess long chain acyl-CoA oxidase activity. Polyclonal antibodies were raised against a large fragment of the protein encoded by the barley putative ACX gene. Northern and Western analysis demonstrated that a basal level of long chain ACX is always present along the barley life cycle, while a higher level of expression is typical of actively growing tissues such as germinating embryos, ovary before anthesis, developing embryos, shoots and roots apexes. In vitro germination experiments with glucose and glucose analogues provided evidence about the involvement of a glucose-deriving signal in the positive modulation of ACX expression. This result highlights the role of ACX, not only during oil reserve mobilization, but also in plant growth and metabolism.  相似文献   

18.

Background and Aims

α-Amylase in grass caryopses (seeds) is usually expressed upon commencement of germination and is rarely seen in dry, mature seeds. A heat-stable α-amylase activity was unexpectedly selected for expression in dry annual ryegrass (Lolium rigidum) seeds during targeted selection for low primary dormancy. The aim of this study was to characterize this constitutive activity biochemically and determine if its presence conferred insensitivity to the germination inhibitors abscisic acid and benzoxazolinone.

Methods

α-Amylase activity in developing, mature and germinating seeds from the selected (low-dormancy) and a field-collected (dormant) population was characterized by native activity PAGE. The response of seed germination and α-amylase activity to abscisic acid and benzoxazolinone was assessed. Using an alginate affinity matrix, α-amylase was purified from dry and germinating seeds for analysis of its enzymatic properties.

Key Results

The constitutive α-amylase activity appeared late during seed development and was mainly localized in the aleurone; in germinating seeds, this activity was responsive to both glucose and gibberellin. It migrated differently on native PAGE compared with the major activities in germinating seeds of the dormant population, but the enzymatic properties of α-amylase purified from the low-dormancy and dormant seeds were largely indistinguishable. Seed imbibition on benzoxazolinone had little effect on the low-dormancy seeds but greatly inhibited germination and α-amylase activity in the dormant population.

Conclusions

The constitutive α-amylase activity in annual ryegrass seeds selected for low dormancy is electrophoretically different from that in germinating seeds and its presence confers insensitivity to benzoxazolinone. The concurrent selection of low dormancy and constitutive α-amylase activity may help to enhance seedling establishment under competitive conditions.  相似文献   

19.
The expression of iron homeostasis-related genes during rice germination   总被引:1,自引:1,他引:0  
To characterize Fe homeostasis during the early stages of seed germination, a microarray analysis was performed. mRNAs extracted from fully mature seeds or seeds harvested 1–3 days after sowing were hybridized to a rice microarray containing approximately 22,000 cDNA oligo probes. Many Fe deficiency-inducible genes were strongly expressed throughout early seed germination. These results suggest that the demand for Fe is extremely high during germination. Under Fe-deficient conditions, rice produces and secretes a metal-cation chelator called deoxymugineic acid (DMA) to acquire Fe from the soil. In addition, DMA and its intermediate nicotianamine (NA) are thought to be involved in long distance Fe transport in rice. Using promoter-β-glucuronidase (GUS) analysis, we investigated the expression patterns during seed germination of the Fe deficiency-inducible genes OsNAS1, OsNAS2, OsNAS3, OsNAAT1, and OsDMAS1, which encode enzymes that participate in the biosynthesis of DMA, and the transporter genes OsYSL2 and OsIRT1, which are involved in Fe transport. All of these genes were expressed in germinating seeds prior to protrusion of the radicle. These results suggest that DMA and NA are produced and involved in Fe transport during germination. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Indole-3-butyric acid (IBA) is an endogenous auxin used to enhance rooting during propagation. To better understand the role of IBA, we isolated Arabidopsis IBA-response (ibr) mutants that display enhanced root elongation on inhibitory IBA concentrations but maintain wild-type responses to indole-3-acetic acid, the principle active auxin. A subset of ibr mutants remains sensitive to the stimulatory effects of IBA on lateral root initiation. These mutants are not sucrose dependent during early seedling development, indicating that peroxisomal beta-oxidation of seed storage fatty acids is occurring. We used positional cloning to determine that one mutant is defective in ACX1 and two are defective in ACX3, two of the six Arabidopsis fatty acyl-CoA oxidase (ACX) genes. Characterization of T-DNA insertion mutants defective in the other ACX genes revealed reduced IBA responses in a third gene, ACX4. Activity assays demonstrated that mutants defective in ACX1, ACX3, or ACX4 have reduced fatty acyl-CoA oxidase activity on specific substrates. Moreover, acx1 acx2 double mutants display enhanced IBA resistance and are sucrose dependent during seedling development, whereas acx1 acx3 and acx1 acx5 double mutants display enhanced IBA resistance but remain sucrose independent. The inability of ACX1, ACX3, and ACX4 to fully compensate for one another in IBA-mediated root elongation inhibition and the ability of ACX2 and ACX5 to contribute to IBA response suggests that IBA-response defects in acx mutants may reflect indirect blocks in peroxisomal metabolism and IBA beta-oxidation, rather than direct enzymatic activity of ACX isozymes on IBA-CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号