首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The ubiquinone-binding protein (QP-C) is a nuclear-encoded component of ubiquinol-cytochrome c oxidoreductase in the mitochondrial respiratory chain and plays an important role in electron transfer as a ubiquinone-QP-C complex. We obtained a partial cDNA for rat liver QP-C by screening a lambda gt11 rat liver cDNA library using antiserum directed against bovine heart QP-C. Using this cDNA as a probe, a cDNA clone was isolated from a human fibroblast cDNA library by colony hybridization. The total length of the cloned cDNA was 518 base pairs with an open reading frame of 333 base pairs. The 111-amino acid sequence deduced from the nucleotide sequence of the cDNA is 85% homologous to that of bovine QP-C and contains only a single additional amino-terminal methionine. This implies that the human QP-C is synthesized without a presequence which is required for import of most nuclear-encoded mitochondrial proteins into mitochondria.  相似文献   

2.
Limited proteolysis of solubilized beef heart mitochondrial complex III with trypsin yields a product previously identified as fragment V" (González-Halphen, D., Lindorfer, M. A., and Capaldi, R. A. (1988) Biochemistry 27, 7021-7031). In this work, fragment V" was generated by trypsin treatment of both the intact complex III and the purified Rieske iron-sulfur protein. Thus, in its bound or isolated form, the same sites of subunit V are sensitive to protease action. Fragment V" was a soluble protein that retained its iron-sulfur moiety. It was purified by exclusion from a hydrophobic phenyl-Sepharose CL-4B column followed by gel filtration. In contrast to the pure, intact subunit V, fragment V" did not reconstitute oxidoreductase activity when combined with complex III devoid of subunit V. However, a 20-amino acid synthetic peptide carrying the sequence between amino acids Lys33 and Lys52 of the Rieske iron-sulfur protein competed with intact subunit V in reconstitution assays. The results obtained suggest that the iron-sulfur protein binds to complex III by hydrophobic protein-protein interactions, and that a nontransmembrane 18-amino acid amphipathic stretch accounts for the association of this subunit to the rest of the complex.  相似文献   

3.
We have isolated a cDNA clone for the Rieske iron-sulfur protein of rat cytochrome bc1 complex, by screening a rat liver cDNA expression library using antiserum directed against the corresponding protein of bovine. The amino acid sequence deduced from the nucleotide sequence of the cDNA indicated that the mature polypeptide of the rat protein consists of 196 amino acid residues with a molecular weight of 21,465, and that it is formed as a precursor with an amino-terminal extension. Northern blot analysis indicated that rat liver possibly contains different sizes of mRNAs for the Rieske iron-sulfur protein, and Southern blot analysis demonstrated that rats and mice possess a single gene for this protein.  相似文献   

4.
A full length cDNA clone encoding the precursor of the rat liver mitochondrial phosphate transporter (H+/Pi symporter) has been isolated from a cDNA library using a bovine heart partial length phosphate transporter clone as a hybridization probe. The entire clone is 1263 base pairs in length with 5'- and 3'-untranslated regions of 16 and 168 base pairs, respectively. The open reading frame encodes for the mature protein (312 amino acids) preceded by a presequence of 44 amino acids enriched in basic residues. The polypeptide sequence predicted from the DNA sequence was confirmed by analyzing the first 17 amino-terminal amino acids of the pure phosphate transporter protein. The rat liver phosphate transporter differs from the bovine heart transporter in 32 amino acids (i.e. approximately 10%). It contains a region from amino acid 139 to 159 which is 37% identical with the beta-subunit of the liver mitochondrial ATP synthase. Amino acid sequence comparisons of the Pi transporter with Pi binding proteins, other H+-linked symporters, and the human glucose transporter did not reveal significant sequence homology. Analysis of genomic DNA from both rat and S. cerevisiae by Southern blots using the rat liver mitochondrial Pi carrier cDNA as a probe revealed remarkably similar restriction patterns, a finding consistent with the presence in lower and higher eukaryotes of homologous Pi carrier proteins. This is the first report of the isolation, sequencing, and characterization of a full length cDNA coding for a protein involved in energy-coupled Pi transport.  相似文献   

5.
6.
A full-length cDNA encoding the human H-protein of the glycine cleavage system has been isolated from a lambda gt11 human fetal liver cDNA library. The cDNA insert was 1091 base pairs with an open reading frame of 519 base pairs which encoded a 125-amino acid mature human H-protein with a 48-amino acid presequence. Human H-protein is 97%, 86%, and 46% identical to the bovine, chicken, and pea H-protein, respectively.  相似文献   

7.
We isolated a cDNA encoding human Rieske Fe-S protein of mitochondrial cytochrome bc1 complex from a fibroblast cDNA library by colony hybridization. The cDNA contains the nucleotide sequence encoding all of the amino acids (274 residues) comprising the putative precursor to the protein. Based on the known amino acid sequence of bovine Rieske Fe-S protein, the N-terminal extension sequence is presumed to be composed of 78 amino acids with a molecular weight of 8053. The mature protein consists of the same number of amino acid residues as that of its rat and bovine counterparts, having a homology of about 92% with the latter.  相似文献   

8.
Chloroplast cyt b6f complexes as well as mitochondrial and bacterial cyt bc1 complexes contain a high potential Rieske iron-sulfur protein which is essential for their function. To characterise the isolated Rieske protein from the mesophilic cyanobacterium Synechocystis PCC6803 we cloned the encoding gene into an expression vector and overexpressed the protein in E. coli. In cells overexpressing the protein no typical Rieske type EPR signal was detected neither in membranes nor in inclusion bodies where the majority of the protein was deposited. The inclusion bodies were isolated from the E. coli cells and denaturated with 8 M urea. With a single anion exchange chromatographic step a pure protein could be obtained which was used for further experiments. The NifS like protein IscS was recently reported to mediate the incorporation of iron-sulfur clusters into ferredoxin in vitro. We used the recombinant IscS protein for the incorporation of the cluster into the folded Rieske apoprotein. Spectroscopic characterisation of the resultant protein by CD and EPR spectroscopy showed the presence of a typical Rieske iron-sulfur centre.  相似文献   

9.
Three overlapping cDNA clones encoding methylmalonate-semialdehyde dehydrogenase (MMSDH; 2-methyl-3-oxopropanoate:NAD+ oxidoreductase (CoA-propanoylating); EC 1.2.1.27) have been isolated by screening a rat liver lambda gt 11 library with nondegenerate oligonucleotide probes synthesized according to polymerase chain reaction-amplified portions coding for the N-terminal amino acid sequence of rat liver MMSDH. The three clones cover a total of 1942 base pairs of cDNA, with an open reading frame of 1569 base pairs. The authenticity of the composite cDNA was confirmed by a perfect match of 43 amino acids known from protein sequencing. The composite cDNA predicts a 503 amino acid mature protein with M(r) = 55,330, consistent with previous estimates. Polymerase chain reaction was used to obtain the sequence of the 32 amino acids corresponding to the mitochondrial entry peptide. Northern blot analysis of total RNA from several rat tissues showed a single mRNA band of 3.8 kilobases. Relative mRNA levels were: kidney greater than liver greater than heart greater than muscle greater than brain, which differed somewhat from relative MMSDH protein levels determined by Western blot analysis: liver = kidney greater than heart greater than muscle greater than brain. A 1423-base pair cDNA clone encoding human MMSDH was isolated from a human liver lambda gt 11 library. The human MMSDH cDNA contains an open reading frame of 1293 base pairs that encodes the protein from Leu-74 to the C terminus. Human and rat MMSDH share 89.6 and 97.7% identity in nucleotide and protein sequence, respectively. MMSDH clearly belongs to a superfamily of aldehyde dehydrogenases and is closely related to betaine aldehyde dehydrogenase, 2-hydroxymuconic semialdehyde dehydrogenase, and class 1 and 2 aldehyde dehydrogenases.  相似文献   

10.
A cDNA clone was isolated from an Arabidopsis leaf cDNA library that shared a high degree of protein sequence identity with mitochondrial acyl carrier proteins (mtACPs) isolated from Neurospora crassa and bovine heart muscle. The cDNA encoded an 88-amino acid mature protein that was preceded by a putative 35-amino acid presequence. In vitro protein import studies have confirmed that the presequence specifically targets this protein into pea mitochondria but not into chloroplasts. These studies indicated that pea mitochondria were not only able to import and process the precursor protein but also possessed the ability to acylate the mature protein. The mitochondrial localization of this protein, mtACP-1, was confirmed by western blot analysis. Arabidopsis mitochondrial protein extracts contained two cross-reacting bands that comigrated with the mature mtACP-1 and acylated mtACP-1 proteins. The acylated form of mtACP-1 was approximately 4 times more abundant than the unacylated form and appeared to be localized predominantly in the mitochondrial membrane where the unacylated mtACP-1 was present mostly in the matrix fraction. A chloroplast fatty acid synthase system was used, and mtACP-1 was able to function as a cofactor for fatty acid synthesis. However, predominantly short- and medium-chain fatty acids were produced in fatty acid synthase reactions supplemented with mtACP-1, suggesting that mtACP-1 may be causing premature fatty acid chain termination.  相似文献   

11.
A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5′-terminal and 3′-terminal were obtained by RACE technique. The full-length cDNAthat encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-QOp. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.  相似文献   

12.
Complex II (succinate-ubiquinone oxidoreductase) is an important enzyme complex of both the tricarboxylic acid cycle and of the aerobic respiratory chains of mitochondria in eukaryotic cell and prokaryotic organisms. In this study, the amino acid sequence of iron sulfur-subunit in human liver mitochondria was deduced from cDNA which was isolated by immunoscreening a human liver lambda gtll cDNA library. An isolated clone contains an open reading frame of 786 nucleotides and encodes a mature protein of 252 amino acids with a molecular weight of 28,804. The amino acid sequence was highly homologous with that of bovine heart (94.1%) which has been determined from the purified peptide and that of Escherichia coli sdh B product (50.8%). Striking sequence conservation was found around the three cysteine-rich clusters which have been thought to comprise the iron-sulfur centers of the enzyme. This is the first report on the cDNA sequence of mitochondrial complex II.  相似文献   

13.
Papain digestion of subunits of mitochondrial b-c1 complex (ubiquinol-cytochrome-c reductase) isolated from bovine heart and its impact on redox and proton-motive activity of the whole complex were investigated. A 5-min incubation of the oxidized enzyme with papain resulted in digestion of core protein II and the 14-kDa subunit, and limited digestion of the iron-sulfur protein. This was accompanied by a small inhibition of the rate of electron flow and a marked inhibition of proton translocation with decrease of the H+/e- ratio for proton pumping. When papain treatment was performed on the b-c1 complex pre-reduced with ascorbate, partial proteolysis of the iron-sulfur protein and the 14-kDa subunit was greatly accelerated and the electron transfer activity was more markedly inhibited. In all the conditions tested, digestion of the Rieske iron-sulfur protein paralleled the inhibition of reductase activity. Under ascorbate-reduced conditions, papain digestion of the complex gave rise to an alteration of the EPR line shape of the iron-sulfur cluster, namely a broadening and shift of the gx negative peak and destabilization of the protein-bound antimycin-sensitive semiquinone. The latter paralleled the decrease in electron transfer activity and inhibition of antimycin-sensitive cytochrome-b reduction. The results obtained indicate the following. 1. Core protein II and the 14-kDa protein may contribute to the proton-conducting pathway(s) from the matrix aqueous phase to the primary protolytic redox center (protein-bound semiquinone/quinone couple). 2. The iron-sulfur protein contributes, together with other protein(s) (the 14-kDa subunit), to the stabilization of the protein-bound antimycin-sensitive semiquinone species in a protein pocket in the complex. 3. Reduction of the high-potential redox centers induces a change in the quaternary structure of the complex which results in an enhanced surface exposure of segments of the 14-kDa protein and the iron-sulfur protein.  相似文献   

14.
The pre-steady-state redox reactions of the Rieske iron-sulfur protein isolated from beef heart mitochondria have been characterized. The rates of oxidation by c-type cytochromes is much faster than the rate of reduction by ubiquinols. This enables the monitoring of the oxidation of ubiquinols by the Rieske protein through the steady-state electron transfer to cytochrome c in solution. The pH and ionic strength dependence of this reaction indicate that the ubiquinol anion is the direct reductant of the oxidized cluster of the iron-sulfur protein. The second electron from ubiquinol is diverted to oxygen by the isolated Rieske protein, and forms oxygen radicals that contribute to the steady-state reduction of cytochrome c. Under anaerobic conditions, however, the reduction of cytochrome c catalyzed by the protein becomes mechanicistically identical to the chemical reduction by ubiquinols. The present kinetic work outlines that: (i) the electron transfer between the ubiquinol anion and the Rieske cluster has a comparable rate when the protein is isolated or inserted into the parent cytochrome c reductase enzyme; (ii) the Rieske protein may be a relevant generator of oxygen radicals during mitochondrial respiration.  相似文献   

15.
This study was designed to determine whether: (1) hypoxia could directly affect ROS production in isolated mitochondria and mitochondrial complex III from pulmonary artery smooth muscle cells (PASMCs) and (2) Rieske iron-sulfur protein in complex III might mediate hypoxic ROS production, leading to hypoxic pulmonary vasoconstriction (HPV). Our data, for the first time, demonstrate that hypoxia significantly enhances ROS production, measured by the standard ROS indicator dichlorodihydrofluorescein/diacetate, in isolated mitochondria from PASMCs. Studies using the newly developed, specific ROS biosensor pHyPer have found that hypoxia increases mitochondrial ROS generation in isolated PASMCs as well. Hypoxic ROS production has also been observed in isolated complex III. Rieske iron-sulfur protein silencing using siRNA abolishes the hypoxic ROS formation in isolated PASM complex III, mitochondria, and cells, whereas Rieske iron-sulfur protein overexpression produces the opposite effect. Rieske iron-sulfur protein silencing inhibits the hypoxic increase in [Ca(2+)](i) in PASMCs and hypoxic vasoconstriction in isolated PAs. These findings together provide novel evidence that mitochondria are the direct hypoxic targets in PASMCs, in which Rieske iron-sulfur protein in complex III may serve as an essential, primary molecule that mediates the hypoxic ROS generation, leading to an increase in intracellular Ca(2+) in PASMCs and HPV.  相似文献   

16.
17.
The nuclear gene encoding the Rieske iron-sulfur protein of the cytochrome bc1 complex of the mitochondrial respiratory chain has been isolated and characterized from Saccharomyces cerevisiae. We used a segment of the iron-sulfur protein gene from Neurospora crassa (Harnisch, U., Weiss, H., and Sebald, W. (1985) Eur. J. Biochem. 149, 95-99) to detect the yeast gene by Southern analysis. Five different but overlapping clones were then isolated by probing a yeast genomic library carried on YEp 13 by colony lift hybridization. Several approaches confirmed that the isolated DNA contained the gene for the Rieske iron-sulfur protein. The yeast gene, which contains no introns, can be expressed in Escherichia coli. A 900-base pair HindIII-EcoRI fragment was subcloned into pUC19 and directed the synthesis of immunodetectable protein. The gene was also identified by disruption of its chromosomal copy by homologous integration. A 400 base pair PstI-EcoRI fragment cloned adjacent to a HIS3 marker in pUC18 was used as an integrating vector. HIS+ transformants were obtained which were unable to grow on the nonfermentable carbon source glycerol. Southern analysis of the respiration deficient (gly-) strains confirmed that the chromosomal copy of the gene was disrupted, and immunoblots of extracts of the transformants indicated a lack of iron-sulfur protein. A respiration-deficient integrant was transformed to GLY+ by a 2-kilobase pair HindIII-BglII fragment, including a complete copy of the gene, carried on a multicopy episomal vector. Immunoblots with monoclonal antibodies to the iron-sulfur protein indicated overproduction of the protein in the complemented strain and revealed expression of approximately equal amounts of mature iron-sulfur protein and of a protein approximately 3 kDa larger than the mature protein in the complemented strain. A 1.2-kilobase pair segment of DNA from the clone which complemented the disrupted strains was sequenced and found to contain an open reading frame of 645 nucleotides, capable of encoding a 21,946-dalton protein. The gene is flanked by consensus signal sequences for initiation and termination which are common in yeast and is preceded by a possible upstream activating sequence. Amino acid sequence analysis of the amino-terminal end of the mature iron-sulfur protein agreed exactly with that predicted by the nucleotide sequence starting at Lys-31.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The orientation of the g-tensors of the Rieske iron-sulfur protein subunit was determined in a single crystal of the bovine mitochondrial cytochrome bc1 complex with stigmatellin in the Qo quinol binding site. The g-tensor principal axes are skewed with respect to the Fe-Fe and S-S atom direction in the 2Fe2S cluster, which is allowed by the lack of rigorous symmetry of the cluster. The asymmetric unit in the crystal is the active dimer, and the g-tensor axes have slightly different orientations relative to the iron-sulfur cluster in the two halves of the dimer. The g approximately 1.79 axis makes an average angle of 30 degrees with respect to the Fe-Fe direction and the g approximately 2.024 axis an average angle of 26 degrees with respect to the S-S direction. This assignment of the g-tensor axis directions indicates that conformations of the Rieske protein are likely the same in the cytochrome bc1 and b6f complexes and that the extent of motion of the Rieske head domain during the catalytic cycle has been highly conserved during evolution of these distantly related complexes.  相似文献   

19.
Although the function of the Rieske iron-sulfur protein is generally understood, little is known of how the structure of this protein supports its mechanistic role in electron transfer in the cytochrome bc1 complex. To better understand the structural basis of iron-sulfur protein function, we have undertaken a mutational analysis of the gene encoding this protein and initially isolated five temperature-sensitive iron-sulfur protein mutants (Beckmann, J. D., Ljungdahl, P. O., and Trumpower, B. L. (1989) J. Biol. Chem. 264, 3713-3722). Each of the five ts-rip1- mutants exhibited pleiotropic effects. Although the mutant iron-sulfur proteins manifest several in vitro phenotypes in common, each exhibited unique characteristics. All of the ts-rip1- mutations resulted in membranes with decreased ubiquinol-cytochrome c oxidoreductase activities and decreased thermostability compared to membranes containing wild type iron-sulfur protein. All of the mutations conferred slight but significant resistance to the respiratory inhibitor myxothiazol, and one mutant was hypersensitive to inhibition by UHDBT, a structural analog of ubiquinone. In addition, one of the mutations completely blocks post-translational processing of the iron-sulfur protein, leading to accumulation of pre-iron-sulfur protein in mitochondrial membranes at nonpermissive temperatures. Finally, a mutation 12-amino acid residues away from the carboxyl terminus (203S) results in an extremely unstable protein. This region of the protein may be essential in blocking degradation of pre-iron-sulfur protein by cytoplasmic proteases as the protein is imported into the mitochondria, or may be a "degradation signal," which tags the iron-sulfur protein for turnover.  相似文献   

20.
The structural gene of the Paracoccus denitrificans NADH-ubiquinone oxidoreductase encoding a homologue of the 75-kDa subunit of bovine complex I (NQO3) has been located and sequenced. It is located approximately 1 kbp downstream of the gene coding for the NADH-binding subunit (NQO1) [Xu, X., Matsuno-Yagi, A., and Yagi, T. (1991) Biochemistry 30, 6422-6428] and is composed of 2019 base pairs and codes for 673 amino acid residues with a calculated molecular weight of 73,159. The M(r) 66,000 polypeptide of the isolated Paracoccus NADH dehydrogenase complex is assigned the NQO3 designation on the basis of N-terminal protein sequence analysis, amino acid analysis, and immuno-cross-reactivity. The encoded protein contains a putative tetranuclear iron-sulfur cluster (probably cluster N4) and possibly a binuclear iron-sulfur cluster. An unidentified reading frame (URF3) which is composed of 396 base pairs and possibly codes for 132 amino acid residues was found between the NQO1 and NQO3 genes. When partial DNA sequencing of the regions downstream of the NQO3 gene was performed, sequences homologous to the mitochondrial ND-1, ND-5, and ND-2 gene products of bovine complex I were found, suggesting that the gene cluster carrying the Paracoccus NADH dehydrogenase complex contains not only structural genes encoding water-soluble subunits but also structural genes encoding hydrophobic subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号