首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The significance of conserved cysteines in the human organic cation transporter 2 (hOCT2), namely the six cysteines in the long extracellular loop (loop cysteines) and C474 in transmembrane helix 11, was examined. Uptake of tetraethylammonium (TEA) and 1-methyl-4-phenypyridinium (MPP) into Chinese hamster ovary cells was stimulated >20-fold by hOCT2 expression. Both cell surface expression and transport activity were reduced considerably following mutation of individual loop cysteines (C51, C63, C89, C103, and C143), and the C89 and C103 mutants had reduced Michaelis constants (K(t)) for MPP. The loop cysteines were refractory to interaction with thiol-reactive biotinylation reagents, except after pretreatment of intact cells with dithiothreitol or following cell membrane solubilization. Reduction of disulfide bridge(s) did not affect transport, but labeling the resulting free thiols with maleimide-PEO(2)-biotin did. Mutation of C474 to an alanine or phenylalanine did not affect the K(t) value for MPP. In contrast, the K(t) value associated with TEA transport was reduced sevenfold in the C474A mutant, and the C474F mutant failed to transport TEA. This study shows that some but not all of the six extracellular loop cysteines exist within disulfide bridge(s). Each loop cysteine is important for plasma membrane targeting, and their mutation can influence substrate binding. The effect of C474 mutation on TEA transport suggests that it contributes to a TEA binding surface. Given that TEA and MPP are competitive inhibitors, the differential effects of C474 modification on TEA and MPP binding suggest that the binding surfaces for each are distinct, but overlapping in area.  相似文献   

2.
The human organic cation transporter type 1 (hOCT1) is an important transport system for small organic cations in the liver. Organic cation transporters are regulated by different signaling pathways, but the regulation of hOCT1 has not yet been studied. In this work, we have for the first time investigated the regulation of hOCT1. hOCT1 was expressed in Chinese hamster ovary cells (CHO-hOCT1) and in human embryonic kidney cells (HEK293-hOCT1). Its activity was monitored using microfluorimetry with the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP(+)) as substrate. hOCT1 expressed in CHO-cells was inhibited by protein kinase A (PKA) activation (1 microM forskolin, -58 +/- 6%, n = 12), calmodulin inhibition (0.1 microM calmidazolium, -68 +/- 3%, n = 6; 10 microM ophiobolin A, -48 +/- 10%, n = 7), calmodulin-dependent kinase II inhibition (1 microM KN62, -78 +/- 4%, n = 12), and inhibition of p56(lck) tyrosine kinase (10 microM aminogenistein, -35 +/- 7%, n = 12). The apparent affinities for TEA(+) were lower in CHO-hOCT1 than in HEK293-hOCT1, while those for TPA(+) and quinine were almost identical; the rank order of EC(50) values (TPA(+) > quinine > TEA(+)) was independent of the expression system. EC(50) values for TEA(+) in CHO-hOCT1 or HEK293-hOCT1 were increased under calmidazolium incubation (6.3 and 1.4 mM, respectively). hOCT1 was inhibited by PKA and endogenously activated by calmodulin, calmodulin-dependent kinase II, and p56(lck) tyrosine kinase. Regulation pathways were the same in the two expression systems. Since apparent substrate affinities depend on activity of regulatory pathways, the expression system plays a role in determining the substrate affinities.  相似文献   

3.
Polyspecific organic cation transporters (OCTs) have a large substrate binding pocket with different interaction domains. To determine whether OCT regulation is substrate specific, suitable fluorescent organic cations were selected by comparing their uptake in wild-type (WT) human embryonic kidney (HEK)-293 cells and in HEK-293 cells stably transfected with hOCT2. N-amidino-3,5-diamino-6-chloropyrazine-carboxamide (amiloride) and 4-[4-(dimethylamino)-styryl]-N-methylpyridinium (ASP) showed concentration-dependent uptake in hOCT2 at 37°C. After subtraction of unspecific uptake determined in WT at 37°C or in hOCT2 at 8°C saturable specific uptake of both substrates was measured. Km values of hOCT2-mediated uptake of 95 µM amiloride and 24 µM ASP were calculated. Inhibition of amiloride and ASP uptake by several organic cations was also measured [IC50 (in µM) for amiloride and ASP, respectively, tetraethylammonium (TEA) 98 and 30, cimetidine 14 and 26, and tetrapentylammonium (TPA) 7 and 2]. Amiloride and ASP uptake were significantly reduced by inhibition of Ca2+/CaM complex (–55 ± 5%, n = 10 and –63 ± 2%, n = 15, for amiloride and ASP, respectively) and stimulation of PKC (–54 ± 5%, n = 14, and –31 ± 6%, n = 26) and PKA (–16 ± 5%, n = 16, and –18 ± 4%, n = 40), and they were increased by inhibition of phosphatidylinositol 3-kinase (+28 ± 6%, n = 8, and +55 ± 17%, n = 16). Inhibition of Ca2+/CaM complex resulted in a significant decrease of Vmax (160–99 photons/s) that can be explained in part by a reduction of the membrane-associated hOCT2 (–22 ± 6%, n = 9) as determined using FACScan flow cytometry. The data indicate that saturable transport by hOCT2 can be measured by the fluorescent substrates amiloride and ASP and that transport activity for both substrates is regulated similarly. Inhibition of the Ca2+/CaM complex causes changes in transport capacity via hOCT2 trafficking. organic cation transport; fluorescence measurement; 4-[4-(dimethylamino)-styryl]-n-methylpyridinium; amiloride  相似文献   

4.
Organic cation transporters of the OCT family mediate downhill transport of organic cations, compatible with carrier, pore, or gate-lumen-gate mechanisms. We studied rat OCT2 expressed in Xenopus oocytes by the two-electrode voltage-clamp technique, including membrane capacitance (C(m)) monitoring. Choline, a transported cationic substrate, elicited the expected inward currents but also elicited decreases of C(m). Similar C(m) decreases were caused by the non-transported inhibitors tetrabutylammonium (a cation) and corticosterone (uncharged). Effects on C(m) were voltage-dependent, with a maximum at -140 mV. These findings suggest that the empty rOCT2 protein can undergo an electrogenic conformation change, with one conformation highly favored at physiological voltage. Moreover, alkali cations elicited considerable inward currents and inhibited uptake of [(14)C]tetraethylammonium with a sequence Cs(+) > Rb(+) > K(+) > Na(+) approximately Li(+). Cs(+) affected current and capacitance with similar affinity (K(0.5) approximately 50 mm). Tetraethylammonium inhibited Cs(+) currents in a concentration-dependent manner. Conversely, Cs(+) inhibited tetraethylammonium uptake by a competitive mechanism. Activation energy of the currents estimated from measurements between 12 degrees C and 32 degrees C was approximately 81 kJ/mol for Cs(+) and 39 kJ/mol for tetramethylammonium, compatible with permeation of Cs(+) through rOCT2 along the same path as organic substrates and by a mechanism different from simple electrodiffusion. Rationalization of Cs(+) selectivity in terms of a pore pointed to a pore diameter of approximately 4 A. Intriguingly, that value matches the known selectivity of rOCT2 for organic compounds. Our data show that selective permeability of rOCT2 is not determined by ligand affinity but might rather be understood in terms of the ion channel concept of a distinct "selectivity filter."  相似文献   

5.
Spermatozoan maturation, motility, and fertility are, in part, dependent upon the progressive increase in epididymal and spermatozoal carnitine, critical for mitochondrial fatty acid oxidation, as sperm pass from the caput to the cauda of the epididymis. We demonstrate that the organic cation/carnitine transporters, OCTN1, OCTN2, and OCTN3, are expressed in sperm as three distinct proteins with an expected molecular mass of 63 kDa, using Western blot analysis and our transporter-specific antibodies. Carnitine uptake studies in normal control human sperm samples further support the presence of high-affinity (OCTN2) carnitine uptake (K(m) of 3.39+/-1.16 microM; V(max) of 0.23+/-0.14 pmol/min/mg sperm protein; and mean+/-SD; n=12), intermediate-affinity (OCTN3) carnitine uptake (K(m) of 25.9+/-14.7 microM; V(max) of 1.49+/-1.03 pmol/min/mg protein; n=26), and low-affinity (OCTN1) carnitine uptake (K(m) of 412.6+/-191 microM; V(max) of 32.7+/-20.5 pmol/min/mg protein; n=18). Identification of individuals with defective sperm carnitine transport may provide potentially treatable etiologies of male infertility, responsive to L-carnitine supplementation.  相似文献   

6.
The organic cation transporter, OCT2, plays a role in renal secretion of a broad array of weak bases. To determine whether the degree of ionization of these compounds plays a role in their interaction with OCT2, we examined the influence of external pH values on the activity of the human ortholog of OCT2, as expressed in Chinese hamster ovary-K1 cells. Importantly, changing the pH value from 7.0 to 8.0 had no effect on the rate of transport of the fixed cations, tetraethylammonium and 1-methyl-4-phenylpyridinium, i.e. the pH value did not have an effect upon the transporter itself. Cimetidine (pK(a) 6.92), a competitive inhibitor of hOCT2, displayed a 3.5-fold increase in IC(50) as pH values increased from 7 to 8. hOCT2-mediated cimetidine transport decreased over this pH range, the consequence of an increase in K(t) and decrease in J(max) at the higher pH value. The weak bases trimethoprim and 4-phenylpyridine showed a similar pattern of pH-sensitive interaction with hOCT2. The non-ionizable sterol, corticosterone, also inhibited hOCT2 activity, although it was neither competitive in nature nor was it sensitive to pH in the manner observed with weak bases. We conclude that the degree of ionization plays a critical role in binding of substrate to organic cation transporters.  相似文献   

7.
The organic cation transporter 2 (OCT2) is expressed in plasma membranes of kidney and brain. Its transport mechanism and substrates are debated. We studied substrate-induced changes of electrical current with the patch clamp technique after expression of rat OCT2 in oocytes. Activation of current, corresponding to efflux, was observed for small organic cations, e.g. choline. In contrast, the bigger cations quinine and tetrabutylammonium elicited no change in current. However, transport of choline could be inhibited by applying quinine or tetrabutylammonium to the cytoplasmic side. Inhibition of organic cation efflux by quinine was competitive with substrates. Quinine at the inside also inhibited substrate influx from the outside. Current-voltage analysis showed that both maximal turnover and apparent affinity to substrates are voltage-dependent. Substrate-induced currents with organic cations on both membrane sides reversed as predicted from the Nernst potential. Our results clearly identify the electrochemical potential as driving force for transport at neutral pH and exclude an electroneutral H(+)/organic cation(+) exchange. We suggest the existence of an electroneutral organic cation(+) exchange and propose a model for a carrier-type transport mechanism.  相似文献   

8.
Novel organic cation transporter (OCTN2) is an organic cation/carnitine transporter, and two missense mutations, L352R and P478L, in OCTN2 have been identified as the cause for primary carnitine deficiency. In the present study, we assessed the influence of these two mutations on the carnitine transport function and the organic cation transport function of OCTN2. The L352R mutation resulted in a complete loss of both transport functions. In contrast, the P478L mutation resulted in a complete loss of only the carnitine transport function but significantly stimulated the organic cation transport function. Studies with human OCTN2/rat OCTN2 chimeric transporters indicated that the carnitine transport site and the organic cation transport site were not identical. Because carnitine transport is Na(+)-dependent whereas organic cation transport is Na(+)-independent, we investigated the possibility that the P478L mutation affected Na(+) binding. The Na(+) activation kinetics were found to be similar for the P478L mutant and wild type OCTN2. We then mutated nine different tyrosine residues located in or near transmembrane domains and assessed the transport function of these mutants. One of these mutations, Y211F, was found to have differential influence on the two transport activities of OCTN2 as did the P478L mutation. However, the Na(+) activation kinetics were not affected. These findings are of clinical relevance to patients with primary carnitine deficiency because whereas each and every mutation in these patients is expected to result in the loss of the carnitine transport function, all of these mutations may not interfere with the organic cation transport function.  相似文献   

9.
Bahn A  Hagos Y  Rudolph T  Burckhardt G 《Biochimie》2004,86(2):133-136
Protein sequence alignments revealed one amino acid position, where organic cation transporters (OCTs, aspartate (D) at position 475 of rOCT2) and organic anion transporters (OATs, arginine (R) at position 466 of rOAT1) are charged oppositely. To address the impact of this amino acid for protein function we cloned rat organic cation transporter 2 (rOCT2), the renal electrogenic cation transporter of the basolateral side of proximal tubule cells. Site-directed mutagenesis was used to generate rOCT2-D475R (rOCT2-mut). Heterologous expression of rOCT2 wild-type (rOCT2-wt) in A6 cells resulted in a significant uptake of the fluorescent organic cation 4-(4-dimethylaminostyryl)-N-methylpyridinium (ASP(+)). Accordingly, rOCT2-wt-transfected COS 7 cells showed an almost fourfold uptake of 25 microM [(14)C]-TEA, whereas rOCT2-mut did not exhibit any uptake of [(14)C]-TEA. These data indicate that rOCT2 transports both ASP(+) and TEA and that aspartate at position 475 of rOCT2 plays a critical role in transport function.  相似文献   

10.
Maternofetal transport of L-carnitine, a molecule that shuttles long-chain fatty acids to the mitochondria for oxidation, is thought to be important in preparing the fetus for its lipid-rich postnatal milk diet. Using brush-border membrane (BBM) vesicles from human term placentas, we showed that L-carnitine uptake was sodium and temperature dependent, showed high affinity for carnitine (apparent Km = 11.09 ± 1.32 µM; Vmax = 41.75 ± 0.94 pmol·mg protein–1·min–1), and was unchanged over the pH range from 5.5 to 8.5. L-Carnitine uptake was inhibited in BBM vesicles by valproate, verapamil, tetraethylammonium, and pyrilamine and by structural analogs of L-carnitine, including D-carnitine, acetyl-D,L-carnitine, and propionyl-, butyryl-, octanoyl-, isovaleryl-, and palmitoyl-L-carnitine. Western blot analysis revealed that OCTN2, a high-affinity, Na+-dependent carnitine transporter, was present in placental BBM but not in isolated basal plasma membrane vesicles. The reported properties of OCTN2 resemble those observed for L-carnitine uptake in placental BBM vesicles, suggesting that OCTN2 may mediate most maternofetal carnitine transport in humans. membrane transport; valproate; maternofetal; xenobiotics; acylcarnitine  相似文献   

11.
12.
Urakami Y  Okuda M  Saito H  Inui K 《FEBS letters》2000,473(2):173-176
Rat (r) OCT2 was identified as the second member of the organic cation transporter (OCT) family, and is predominantly expressed in the kidney. We reported previously that rOCT2 was responsible for the gender differences in renal basolateral membrane organic cation transport activity. As renal rOCT2 expression in males is much higher than that in females, we hypothesized that rOCT2 expression may be under the control of sex hormones. Treatment of male and female rats with testosterone significantly increased the expression levels of rOCT2 mRNA and protein in the kidney, whereas estradiol treatment moderately decreased the expression levels of rOCT2. There was no regulation of renal rOCT1 mRNA expression by testosterone or estradiol. Treatment of male and female rats with testosterone significantly stimulated the tetraethylammonium (TEA) accumulation by renal slices, whereas estradiol treatment caused a decrease in the TEA accumulation by slices from male but not female rats. The present findings suggested that testosterone up-regulates renal rOCT2 expression and estradiol moderately down-regulates rOCT2.  相似文献   

13.
14.
l-Carnitine is derived both from dietary sources and biosynthesis. Dietary carnitine is absorbed in the small intestine and then distributed to other organs. Previous studies using Caco-2 cells demonstrated that the transport of l-carnitine in the intestine involves a carrier-mediated system. The purpose of this study was to determine whether the uptake of l-carnitine in Caco-2 cells is mediated by the recently identified organic cation/carnitine transporter (OCTN2). Kinetics of l-[(3)H]carnitine uptake were investigated with or without specific inhibitors. l-Carnitine uptake in mature cells was sodium dependent and linear with time. K(m) and V(max) values for saturable uptake were 14.07 +/- 1.70 micro M and 26.3 +/- 0.80 pmol. mg protein(-1). 6 min(-1), respectively. l-carnitine uptake was inhibited (P < 0.05-0.01) by valproate and other organic cations. Anti-OCTN2 antibodies recognized a protein in the brush-border membrane (BBM) of Caco-2 cells with an apparent molecular mass of 60 kDa. The OCTN2 expression was confirmed by double immunostaining. Our results demonstrate that l-carnitine uptake in differentiated Caco-2 cells is primarily mediated by OCTN2, located on the BBM.  相似文献   

15.
Human organic cation transporters (OCTs) represent an understudied neurotransmitter uptake mechanism for which no selective agents have yet been identified. Several neurotransmitters (e.g. serotonin, norepinephrine) are low-affinity substrates for these transporters, but possess higher affinity for other transporters (e.g. the serotonin or norepinephrine transporters; SERT and NET, respectively). We have identified a new class of OCT inhibitors with a phenylguanidine structural scaffold. Here, we examine the actions of a series of such compounds and report preliminary structure–activity relationships (SARs) – the first dedicated SAR study of OCT3 action. Initial results showed that the presence of a substituent on the phenyl ring, as well as its position, contributes to the phenylguanidines’ inhibitory potency (IC50 values ranging from 2.2 to >450 μM) at hOCT3. There is a trend towards enhanced inhibitory potency of phenylguanidines with increased lipophilic character and the size of the substituent at the phenyl 4-position, with the latter reaching a ceiling effect. The first PiPT-based hOCT3 homology models were generated and are in agreement with our biological data.  相似文献   

16.
17.
Among the organic cation transporters, OCTN2 is identified as the most important carnitine transporter owing to the ability to transport carnitine. Although the OCTN2 is previously found in various tissues, there have been no reports showing the OCTN2 in the pancreas. In this study, we examined the expression and localization of OCTN2 in the mouse pancreas by the aid of an in situ hybridization technique and immunohistochemistry with anti-OCTN2 antibody. As a result, the OCTN2 expression was found in the A-cells for the first time. OCTN2 was not expressed in B-cells, notwithstanding that the metabolism of long-chain fatty acids, which are transported into the mitochondria with the help of carnitine, was expected for fatty acid-stimulated insulin secretion. Thus, this study suggests the possibility of carnitine uptake in the pancreatic A-cells through OCTN2 and implies the presence of carnitine transporter(s) other than OCTN2 in the B-cell.  相似文献   

18.
Human multidrug and toxic compound extrusion 2 (hMATE2) is a kidney-specific isoform of hMATE1, an exporter of toxic organic cations (OCs) of exogenous and endogenous origins at the final excretion step in the kidneys and liver (Otsuka et al., 2005), and contains a splicing variant, MATE2K, that has an exon of hMATE2 deleted (Masuda et al., 2006). In the present study, we characterized the degree of expression and the transport properties of hMATE2. Quantitative PCR analysis with probes specific for hMATE2 indicated the presence of hMATE2 mRNA in the kidneys, which corresponded to 39% of total mRNA encoding both hMATE2 and hMATE2K. hMATE2-specific antibodies immunostained the renal urinary tubules. Upon expression in HEK293 cells, hMATE2 was localized in intracellular vesicular structures, and thus transport activity of tetraethylammonium (TEA), a typical substrate for MATE transporters, by the cells was not detected. The hMATE2 protein was purified and reconstituted into liposomes. An artificially imposed pH gradient (ΔpH) across the proteoliposomal membrane drove the uptake of TEA. Dissipation of ΔpH by ammonium sulfate effectively inhibited the TEA uptake, while that of the membrane potential by valinomycin had little effect. The profiles of cis-inhibition of TEA transport by hMATE2 and hMATE2K are similar to each other. Thus, both hMATE2 and hMATE2K equally operate in the human kidneys to extrude OCs into the urine.  相似文献   

19.
Membranes from a stably transfected cell line that expresses the human organic cation 1 transporter (hOCT1) have been immobilized on the immobilized artificial membrane (IAM) liquid chromatographic stationary phase to form the hOCT1(+)-IAM stationary phase. Membranes from the parent cell line that does not express the hOCT1 were also immobilized to create the hOCT1(-)-IAM stationary phase. Columns were created using both stationary phases, and frontal displacement chromatography experiments were conducted using [(3)H]-methyl phenyl pyridinium ([(3)H]-MPP(+)) as the marker ligand and MPP(+), verapamil, quinidine, quinine, nicotine, dopamine and vinblastin as the displacers. The K(d) values calculated from the chromatographic studies correlated with previously reported K(i) values (r(2)=0.9987; p<0.001). The data indicate that the hOCT1(+)-IAM column can be used for the on-line determination of binding affinities to the hOCT1 and that these affinities are comparable to those obtained using cellular uptake studies. In addition, the chromatographic method was able to identify a previously undetected high affinity binding site for MPP(+) and to determine that hOCT1 bound (R)-verapamil to a greater extent than (S)-verapamil.  相似文献   

20.
Carnitine β-hydroxy-γ-(trimethylammonio)butyrate – a compound necessary in the peripheral tissues for a transfer of fatty acids for their oxidation within the cell, accumulates in the brain despite low β-oxidation in this organ. In order to enter the brain, carnitine has to cross the blood–brain barrier formed by capillary endothelial cells which are in close interaction with astrocytes. Previous studies, demonstrating expression of mRNA coding two carnitine transporters – organic cation/carnitine transporter 2 (OCTN2) and B0,+ in endothelial cells, did not give any information on carnitine transporters polarity in endothelium. Therefore more detailed experiments were performed on expression and localization of a high affinity carnitine transporter OCTN2 in an in vitro model of the blood–brain barrier by real-time PCR, western blot analysis, and immunocytochemistry. The amount of mRNA was comparable in endothelial cells and kidney, when referred to house-keeping genes, it was, however, significantly lower in astrocytes. Polarity of OCTN2 localization was further studied in an in vitro model of the blood–brain barrier with use of anti-OCTN2 antibodies. Z -axis analysis of the confocal microscope pictures of endothelial cells, with anti-P-glycoprotein antibodies as the marker of apical membrane, showed OCTN2 localization at the basolateral membrane and in the cytoplasmic region in the vicinity of nuclei. Localization of OCTN2 suggest that carnitine can be also transported from the brain, playing an important role in removal of certain acyl esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号