首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Hfq protein, which shares sequence and structural homology with the Sm and Lsm proteins, binds to various RNAs, primarily recognizing AU-rich single-stranded regions. In this paper, we study the ability of the Escherichia coli Hfq protein to bind to a polyadenylated fragment of rpsO mRNA. Hfq exhibits a high specificity for a 100-nucleotide RNA harboring 18 3′-terminal A-residues. Structural analysis of the adenylated RNA–Hfq complex and gel shift assays revealed the presence of two Hfq binding sites. Hfq binds primarily to the poly(A) tail, and to a lesser extent a U-rich sequence in a single-stranded region located between two hairpin structures. The oligo(A) tail and the interhelical region are sensitive to 3′–5′ exoribonucleases and RNase E hydrolysis, respectively, in vivo. In vitro assays demonstrate that Hfq protects poly(A) tails from exonucleolytic degradation by both PNPase and RNase II. In addition, RNase E processing, which occurred close to the U-rich sequence, is impaired by the presence of Hfq. These data suggest that Hfq modulates the sensitivity of RNA to ribonucleases in the cell.  相似文献   

3.
4.
5.
6.
7.
8.
RNase E of Escherichia coli is an essential endoribonuclease that is involved in many aspects of RNA metabolism. Point mutations in the S1 RNA-binding domain of RNase E (rne-1 and rne-3071) lead to temperature-sensitive growth along with defects in 5S rRNA processing, mRNA decay and tRNA maturation. However, it is not clear whether RNase E acts similarly on all kinds of RNA substrates. Here we report the isolation and characterization of three independent intragenic second-site suppressors of the rne-1 and rne-3071 alleles that demonstrate for the first time the dissociation of the in vivo activity of RNase E on mRNA versus tRNA and rRNA substrates. Specifically, tRNA maturation and 9S rRNA processing were restored to wild-type levels in each of the three suppressor mutants (rne-1/172, rne-1/186 and rne-1/187), while mRNA decay and autoregulation of RNase E protein levels remained as defective as in the rne-1 single mutant. Each single amino acid substitution (Gly→Ala at amino acid 172; Phe → Cys at amino acid 186 and Arg → Leu at amino acid 187) mapped within the 5′ sensor region of the RNase E protein. Molecular models of RNase E suggest how suppression may occur.  相似文献   

9.
RNase J1, a ribonuclease with 5′ exonuclease and endonuclease activities, is an important factor in Bacillus subtilis mRNA decay. A model for RNase J1 endonuclease activity in mRNA turnover has RNase J1 binding to the 5′ end and tracking to a target site downstream, where it makes a decay-initiating cleavage. The upstream fragment from this cleavage is degraded by 3′ exonucleases; the downstream fragment is degraded by RNase J1 5′ exonuclease activity. Previously, ΔermC mRNA was used to show 5′-end dependence of mRNA turnover. Here we used ΔermC mRNA to probe RNase J1-dependent degradation, and the results were consistent with aspects of the model. ΔermC mRNA showed increased stability in a mutant strain that contained a reduced level of RNase J1. In agreement with the tracking concept, insertion of a strong stem–loop structure at +65 resulted in increased stability. Weakening this stem–loop structure resulted in reversion to wild-type stability. RNA fragments containing the 3′ end were detected in a strain with reduced RNase J1 expression, but were undetectable in the wild type. The 5′ ends of these fragments mapped to the upstream side of predicted stem–loop structures, consistent with an impediment to RNase J1 5′ exonuclease processivity. A ΔermC mRNA deletion analysis suggested that decay-initiating endonuclease cleavage could occur at several sites near the 3′ end. However, even in the absence of these sites, stability was further increased in a strain with reduced RNase J1, suggesting alternate pathways for decay that could include exonucleolytic decay from the 5′ end.  相似文献   

10.
We previously reported that the Corynebacterium glutamicum RNase E/G encoded by the rneG gene (NCgl2281) is required for the 5′ maturation of 5S rRNA. In the search for the intracellular target RNAs of RNase E/G other than the 5S rRNA precursor, we detected that the amount of isocitrate lyase, an enzyme of the glyoxylate cycle, increased in rneG knockout mutant cells grown on sodium acetate as the sole carbon source. Rifampin chase experiments showed that the half-life of the aceA mRNA was about 4 times longer in the rneG knockout mutant than in the wild type. Quantitative real-time PCR analysis also confirmed that the level of aceA mRNA was approximately 3-fold higher in the rneG knockout mutant strain than in the wild type. Such differences were not observed in other mRNAs encoding enzymes involved in acetate metabolism. Analysis by 3′ rapid amplification of cDNA ends suggested that RNase E/G cleaves the aceA mRNA at a single-stranded AU-rich region in the 3′ untranslated region (3′-UTR). The lacZ fusion assay showed that the 3′-UTR rendered lacZ mRNA RNase E/G dependent. These findings indicate that RNase E/G is a novel regulator of the glyoxylate cycle in C. glutamicum.  相似文献   

11.
The Escherichia coli RNA chaperone Hfq was discovered originally as an accessory factor of the phage Qbeta replicase. More recent work suggested a role of Hfq in cellular physiology through its interaction with ompA mRNA and small RNAs (sRNAs), some of which are involved in translational regulation. Despite their stability under certain conditions, E. coli sRNAs contain putative RNase E recognition sites, that is, A/U-rich sequences and adjacent stem-loop structures. We show herein that an RNase E cleavage site coincides with the Hfq-binding site in the 5'-untranslated region of E. coli ompA mRNA as well as with that in the sRNA, DsrA. Likewise, Hfq protects RyhB RNA from in vitro cleavage by RNase E. These in vitro data are supported by the increased abundance of DsrA and RyhB sRNAs in an RNase E mutant strain as well as by their decreased stability in a hfq(-) strain. It is commonly believed that the RNA chaperone Hfq facilitates or promotes the interaction between sRNAs and their mRNA targets. This study reveals another role for Hfq, that is, protection of sRNAs from endonucleolytic attack.  相似文献   

12.
RNase III–related enzymes play key roles in cleaving double-stranded RNA in many biological systems. Among the best-known are RNase III itself, involved in ribosomal RNA maturation and mRNA turnover in bacteria, and Drosha and Dicer, which play critical roles in the production of micro (mi)–RNAs and small interfering (si)–RNAs in eukaryotes. Although RNase III has important cellular functions in bacteria, its gene is generally not essential, with the remarkable exception of that of Bacillus subtilis. Here we show that the essential role of RNase III in this organism is to protect it from the expression of toxin genes borne by two prophages, Skin and SPβ, through antisense RNA. Thus, while a growing number of organisms that use RNase III or its homologs as part of a viral defense mechanism, B. subtilis requires RNase III for viral accommodation to the point where the presence of the enzyme is essential for cell survival. We identify txpA and yonT as the two toxin-encoding mRNAs of Skin and SPβ that are sensitive to RNase III. We further explore the mechanism of RNase III–mediated decay of the txpA mRNA when paired to its antisense RNA RatA, both in vivo and in vitro.  相似文献   

13.
The endoribonuclease RNase E of Escherichia coli is an essential enzyme that plays a major role in all aspects of RNA metabolism. In contrast, its paralog, RNase G, seems to have more limited functions. It is involved in the maturation of the 5′ terminus of 16S rRNA, the processing of a few tRNAs, and the initiation of decay of a limited number of mRNAs but is not required for cell viability and cannot substitute for RNase E under normal physiological conditions. Here we show that neither the native nor N-terminal extended form of RNase G can restore the growth defect associated with either the rne-1 or rneΔ1018 alleles even when expressed at very high protein levels. In contrast, two distinct spontaneously derived single amino acid substitutions within the predicted RNase H domain of RNase G, generating the rng-219 and rng-248 alleles, result in complementation of the growth defect associated with various RNase E mutants, suggesting that this region of the two proteins may help distinguish their in vivo biological activities. Analysis of rneΔ1018/rng-219 and rneΔ1018/rng-248 double mutants has provided interesting insights into the distinct roles of RNase E and RNase G in mRNA decay and tRNA processing.  相似文献   

14.
Here, we show that Escherichia coli Ribonuclease III cleaves specifically the RNA genome of hepatitis C virus (HCV) within the first 570 nt with similar efficiency within two sequences which are ~400 bases apart in the linear HCV map. Demonstrations include determination of the specificity of the cleavage sites at positions C27 and U33 in the first (5′) motif and G439 in the second (3′) motif, complete competition inhibition of 5′ and 3′ HCV RNA cleavages by added double-stranded RNA in a 1:6 to 1:8 weight ratio, respectively, 50% reverse competition inhibition of the RNase III T7 R1.1 mRNA substrate cleavage by HCV RNA at 1:1 molar ratio, and determination of the 5′ phosphate and 3′ hydroxyl end groups of the newly generated termini after cleavage. By comparing the activity and specificity of the commercial RNase III enzyme, used in this study, with the natural E.coli RNase III enzyme, on the natural bacteriophage T7 R1.1 mRNA substrate, we demonstrated that the HCV cuts fall into the category of specific, secondary RNase III cleavages. This reaction identifies regions of unusual RNA structure, and we further showed that blocking or deletion of one of the two RNase III-sensitive sequence motifs impeded cleavage at the other, providing direct evidence that both sequence motifs, besides being far apart in the linear RNA sequence, occur in a single RNA structural motif, which encloses the HCV internal ribosome entry site in a large RNA loop.  相似文献   

15.
16.
RNase E and RNase G are homologous endonucleases that play important roles in RNA processing and decay in Escherichia coli and related bacterial species. Rapid mRNA degradation is facilitated by the preference of both enzymes for decay intermediates whose 5′ end is monophosphorylated. In this report we identify key characteristics of RNA that influence the rate of 5′-monophosphate-assisted cleavage by these two ribonucleases. In vitro, both require at least two and prefer three or more unpaired 5′-terminal nucleotides for such cleavage; however, RNase G is impeded more than RNase E when fewer than four unpaired nucleotides are present at the 5′ end. Each can tolerate any unpaired nucleotide (A, G, C, or U) at either of the first two positions, with only modest biases. The optimal spacing between the 5′ end and the scissile phosphate appears to be eight nucleotides for RNase E but only six for RNase G. 5′-Monophosphate-assisted cleavage also occurs, albeit more slowly, when that spacing is greater or at most one nucleotide shorter than the optimum, but there is no simple inverse relationship between increased spacing and the rate of cleavage. These properties are also manifested during 5′-end-dependent mRNA degradation in E. coli.  相似文献   

17.
Although correct tRNA 3′ ends are crucial for protein biosynthesis, generation of mature tRNA 3′ ends in eukaryotes is poorly understood and has so far only been investigated in vitro. We report here for the first time that eukaryotic tRNA 3′ end maturation is catalysed by the endonuclease RNase Z in vivo. Silencing of the JhI-1 gene (RNase Z homolog) in vivo with RNAi in Drosophila S2 cultured cells causes accumulation of nuclear and mitochondrial pre-tRNAs, suggesting that JhI-1 encodes both forms of the tRNA 3′ endonuclease RNase Z, and establishing its biological role in endonucleolytic tRNA 3′ end processing. In addition our data show that in vivo 5′ processing of nuclear and mitochondrial pre-tRNAs occurs before 3′ processing.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号