首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allopurinol (4-hydroxypyrazolo (3,4-d)-pyrimidine) is a potent xanthine oxidase inhibitor which inhibits the oxidation of naturally occurring oxypurines, thus decreasing uric acid formation. The clinical and metabolic effects of this agent were studied in 80 subjects with primary and secondary gout and other disorders of uric acid metabolism. Allopurinol has been universally successful in lowering the serum uric acid concentration and uric acid excretion to normal levels, while not significantly affecting the clearance of urate or other aspects of renal function. Oxypurine excretion increased concomitantly with the fall in urine uric acid. The agent is particularly valuable in the management of problems of gout with azotemia, acute uric acid nephropathy and uric acid urolithiasis. The minor side effects, clinical indications and theoretical complications are discussed.  相似文献   

2.
3.
4.
Hyperuricemia is caused by hepatic overproduction of uric acid and/or underexcretion of urate from the kidneys and small intestine. Although increased intake of citrus fruits, a fructose-rich food, is associated with increased risk of gout in humans, hesperidin, a flavonoid naturally present in citrus fruits, reportedly reduces serum uric acid (SUA) levels by inhibiting xanthine oxidase (XOD) activity in rats. However, the effects of hesperidin on renal and intestinal urate excretion were previously unknown. In this study, we used glucosyl hesperidin (GH), which has greater bioavailability than hesperidin, to clarify comprehensive mechanisms underlying the hypouricemic effects of hesperidin in vivo. GH dose-dependently decreased SUA levels in mice with hyperuricemia induced by potassium oxonate and a fructose-rich diet, and inhibited XOD activity in the liver. GH decreased renal urate excretion without changes in kidney URAT1, ABCG2 or GLUT9 expressions, suggesting that reducing uric acid pool size by inhibiting XOD decreased renal urate excretion. We also found that GH had no effect on intestinal urate excretion or protein expression of ABCG2. Therefore, we concluded that GH exhibits a hypouricemic effect by inhibiting XOD activity in the liver without increasing renal or intestinal urate excretion. Of note, this is the first study to elucidate the effect of a flavonoid on intestinal urate excretion using a mice model, whose findings should prove useful in future food science research in the area of urate metabolism. Taking these findings together, GH may be useful for preventing hyperuricemia, especially in people with the overproduction type.  相似文献   

5.
ATP-binding cassette transporter G2 (ABCG2), also known as breast cancer resistance protein (BCRP), is identified as a high-capacity urate exporter and its dysfunction has an association with serum uric acid (SUA) levels and gout/hyperuricemia risk. However, pathophysiologically important pathway(s) responsible for the ABCG2-mediated urate excretion were unknown. In this study, we investigated how ABCG2 dysfunction affected the urate excretion pathways. First, we revealed that mouse Abcg2 mediates urate transport using the membrane vesicle system. The export process by mouse Abcg2 was ATP-dependent and not saturable under the physiological concentration of urate. Then, we characterized the excretion of urate into urine, bile, and intestinal lumen using in vivo mouse model. SUA of Abcg2-knockout mice was significantly higher than that of control mice. Under this condition, the renal urate excretion was increased in Abcg2-knockout mice, whereas the urate excretion from the intestine was decreased to less than a half. Biliary urate excretion showed no significant difference regardless of Abcg2 genotype. From these results, we estimated the relative contribution of each pathway to total urate excretion; in wild-type mice, the renal excretion pathway contributes approximately two-thirds, the intestinal excretion pathway contributes one-third of the total urate excretion, and the urate excretion into bile is minor. Decreased intestinal excretion could account for the increased SUA of Abcg2-knockout mice. Thus, ABCG2 is suggested to have an important role in extra-renal urate excretion, especially in intestinal excretion. Accordingly, increased SUA in patients with ABCG2 dysfunction could be explained by the decreased excretion of urate from the intestine.  相似文献   

6.
In order to determine whether exercise-induced profuse sweating could reduce urinary uric acid excretion, we simulated badminton players training and measured their uric acid in urine, sweat and blood during the training period. Thirteen male volunteers who were well-trained badminton players were recruited in this study. On the first 2 days and the last 2 days of the study period none of the subjects engaged in any intense exercise- or activity-inducing profuse sweat, but they accepted routine training 2 h per day during the middle 3 days. The results show that mean serum urate levels of thirteen volunteers rose significantly on day 4, when the concentrations increased by 18.2% over day 2 (P < 0.05). The mean ten-hour urinary uric acid excretion of seven volunteers on the 3 training days was significantly less at 178.5 micromol/day and 118.3 micromol/day than those on the preceding and subsequent days of the training days, respectively (P < 0.05). Furthermore, for six volunteers, the mean ratio of clearance of uric acid to creatinine was 6.6% on day 2, which significantly decreased to 5.4% on day 4 (P < 0.05). It is concluded profuse sweating exercise results in a decrease of urinary uric acid excretion amounts and leads to increased serum uric acid after the exercise. We suggest that persons who take vigorous exercise or are exposed to hot environments need drinking enough fluids to prevent dehydration and maintain adequate urinary output. People with profuse sweat after rigorous exercise are recommended taking sports drinks containing abundant sodium in order to decrease serum uric acid.  相似文献   

7.
All Dalmatian dogs have an inherited defect in purine metabolism leading to high levels of uric acid excretion in their urine (hyperuricosuria) rather than allantoin, the normal end product of purine metabolism in all other breeds of dog. Transplantation experiments have demonstrated that the defect is intrinsic to the liver and not the kidney. Uricase, the enzyme involved in the breakdown of urate into allantoin, has been shown to function in Dalmatian liver cells. Therefore, candidate genes for this defect include transporters of urate, a salt of uric acid, across cell membranes. We excluded one such urate transporter candidate, galectin 9, using a Dalmatian x Pointer backcross in which hyperuricosuria was segregating.  相似文献   

8.
1. In eight Dalmatian dogs low and high purine intakes resulted in plasma urate levels from 25 to 185 mumol/l. 2. The relationship between purine intake and excretion of uric acid and allantoin per day was described by linear regression equations. 3. The elimination of endogenous purines was 1.8 mmol/day for urate and 1.7 mmol/day for allantoin. Exogenous purines increased renal excretion by 0.57 mmol/mmol. 4. Kinetic measurements with [2(-14)C]uric acid infused continuously into each of two dogs on low and high purine revealed increases of plasma pool (urate + allantoin) of 3.3 fold and entry rate of 4.0 fold. Conversion of urate into allantoin increased from 20 to 36%. 5. Renal elimination of catabolites increased 3.3 fold and exhalation rate of purine-CO2 379 fold. Extra-renal elimination at high purine intake was quantitatively similar to humans and closely related to pool size.  相似文献   

9.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5–10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non‐recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost‐effective option in the management of hyperuricemia.  相似文献   

10.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5-10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non-recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost-effective option in the management of hyperuricemia.  相似文献   

11.
Shima Y  Teruya K  Ohta H 《Life sciences》2006,79(23):2234-2237
Serum uric acid levels are maintained by urate synthesis and excretion. URAT1 (coded by SLC22CA12) was recently proposed to be the major absorptive urate transporter protein in the kidney regulating blood urate levels. Because genetic background is known to affect serum urate levels, we hypothesized that genetic variations in SLC22A12 may predispose humans to hyperuricemia and gout. We investigated rs893006 polymorphism (GG, GT and TT) in SLC22A12 in a total of 326 Japanese subjects. Differences in clinical characteristics among the genotype groups were tested by the analysis of variance (ANOVA). In male subjects, mean serum uric acid levels were significantly different among the three genotypes. Levels in the GG genotype subjects were the highest, followed by those with the GT and TT genotypes. However, no differences between the groups were seen in the distributions of creatinine, Fasting plasma glucose (FPG), HbA(1c), total cholesterol, triglyceride, HDL cholesterol levels or BMI. A single nucleotide polymorphism (SNP) in the urate transporter gene SLC22CA12 was found to be associated with elevated serum uric acid levels among Japanese subjects. This SNP may be an independent genetic marker for predicting hyperuricemia.  相似文献   

12.
痛风性关节炎动物模型的研究现状与展望   总被引:9,自引:0,他引:9  
痛风是由于机体嘌呤代谢紊乱,导致血内尿酸增高和/或肾脏排泄尿酸减少,从而引起尿酸盐在组织沉积的疾病,目前尚未见在实验动物中复制出类似人类的痛风性关节炎模型。通过对目前国内外高尿酸血症及痛风模型复制的方法、机制和应用的研究,分析各自的特点及不足之处,并提出复制更加符合临床的高尿酸血症及痛风性关节炎动物模型的展望与设想。  相似文献   

13.
14.
15.
Allyl isothiocyanate (AITC) is a constituent of several plants of the family Cruciferae that are commonly used as food. This study investigated the effect of feeding AITC to male Sprague-Dawley rats on their plasma glucose and uric acid levels as well as on the urinary concentrations of glucose, 17-ketosteroids (17-KS), creatinine, and uric acid. Other test compounds included were thyroxine (T4) and thiouracil (TU). AITC caused a highly significant (P smaller than or equal to 0.01) depression in the plasma glucose and uric acid levels compared with the control. TU caused a significant depression only of the plasma glucose. T4, on the other hand, significantly increased the levels of both glucose and uric acid. The AITC-treated rats voided twice as much urine as the controls or those receiving TU or injected with T4. The 24-h excretion of glucose, uric acid, and creatinine was significantly (P smaller than or equal to 0.01) higher in animals fed AITC than in those consuming the control diet, while the excretion of 17-KS was significantly lower. Results on an equal urine volume basis showed that differences in the excretion of glucose and creatinine were related to differences in the urine volume. TU significantly depressed excretion of all the compounds but glucose. The effect of T4 on the excretion of 17-KS and uric acid resembled that of AITC and TU, thus showing that these compounds depressed the androgenic function of the animal.  相似文献   

16.
BACKGROUND: Deposition of uric acid in the kidney can lead to progressive tubulointerstitial injury with granuloma formation. We hypothesized that uric acid crystal deposition may induce granuloma formation by stimulating local expression of macrophage migration inhibitory factor (MIF), which is a known mediator of delayed type hypersensitivity (DTH). MATERIALS AND METHODS: A model of acute uric acid nephropathy was induced in rats by the administration of oxonic acid (an inhibitor of uricase), together with uric acid supplements. MIF expression and local cellular response were examined by in situ hybridization and immunohistochemistry. RESULTS: Kidney tissue examined at 35 days posttreatment showed widespread tubulointerstitial damage with intratubular uric acid crystal deposition and granuloma formation. Tubules within the areas of granuloma showed a six-fold increase in MIF mRNA, compared with uninvolved areas by in situ hybridization. Moreover, the areas of increased MIF mRNA expression correlated with sites of dense accumulation of macrophages and T cells, and these cells were activated when assessed by the expression of interleukin-2R (IL-2R) and (MHC) class II. Interestingly, cytoplasmic staining for MIF protein in the uric acid (UA) crystal-associated granulomatous lesions was reduced, indicating a rapid MIF secretion by damaged tubules and macrophages secondary to uric acid crystal stimulation. This was confirmed by the demonstration of a marked increase in urinary MIF protein by Western blot analysis. Control rats fed either a normal diet or only oxonic acid had no discernible evidence of renal disease by routine light microscopy and minimal tubular expression of MIF mRNA and protein. CONCLUSIONS: These data suggest that intrarenal granulomas in urate nephropathy may be the consequence of a crystal induced DTH reaction mediated by MIF.  相似文献   

17.
G. Pylypchuk  U. Ehrig  D. R. Wilson 《CMAJ》1979,120(6):658-665
The propensity of urine to promote calcium stone formation was compared in 64 patients with recurrent idiopathic calcium nephrolithiasis and 30 healthy individuals without such a history. The rates of excretion of urine crystalloids, the urine saturation with brushite (CaHPO4-2H2O), the ability of the urine to calcify collagen in vitro, and the concentration of urine inhibitors of collagen calcification were measured. The patients had a reduced urine citrate excretion rate in addition to an increased urine calcium excretion rate, while the rates for urine magnesium, phosphate, uric acid and oxalate were not significantly different in the two groups of subjects. The urine concentration of magnesium, phosphate and uric acid was decreased in the patients because of the higher urine volume. The urine creatinine excretion rate correlated with the rates of excretion of urine calcium, magnesium, phosphate, uric acid and oxalate in both groups, which suggested that increased lean body mass, possibly associated with greater food intake, may be an important determinant of crystalloid excretion. The urine of the patients was significantly more saturated with brushite than the urine of the control subjects and resulted in greater collagen calcification when incubated in vitro. The urine concentration of inhibitors of collagen calcification, however, was not significantly different in the two groups. Thus, the urine of patients with recurrent idiopathic calcium nephrolithiasis is more highly saturated with brushite, largely as a result of an increased urine calcium excretion rate, and contains a lower concentration of magnesium and citrate, substances that tend to prevent the precipitation and growth of crystals in urine.  相似文献   

18.
To assess whether allantoin levels in serum and urine are influenced by exhaustive and moderate exercise and whether allantoin is a useful indicator of exercise-induced oxidative stress in humans, we made subjects perform exhaustive and moderate (100% and 40% VO2max) cycling exercise and examined the levels of allantoin, thiobarbituric acid reactive substances (TBARS) and urate in serum and urine. Immediately after exercise at 100% VO2max, the serum allantoin/urate ratio was significantly elevated compared with the resting levels while the serum urate levels was significantly elevated 30 min after exercise. The serum TBARS levels did not increase significantly compared with the resting levels. Urinary allantoin excretion significantly increased during 60 min of recovery after exercise, however, urinary urate excretion decreased significantly during the same period. The urinary allantoin/urate ratio also rapidly increased during 60 min of recovery after exercise. Urinary TBARS excretion decreased during the first 60 min of the recovery period and thereafter significantly increased during the latter half of the recovery period. On the contrary, after 40% VO2max of exercise, no significant changes in the levels of urate, allantoin and TBARS in serum or urine were observed. These findings suggest that allantoin levels in serum and urine may reflect the extent of oxidative stress in vivo and that the allantoin which appeared following exercise may have originated not from urate formed as a result of exercise but from urate that previously existed in the body. Furthermore, these findings support the view that allantoin in serum and urine is a more sensitive and reliable indicator of in vivo oxidative stress than lipid peroxidation products measured as TBARS.  相似文献   

19.
Although dietary, genetic, or disease-related excesses in urate production may contribute to hyperuricemia, impaired renal excretion of uric acid is the dominant cause of hyperuricemia in the majority of patients with gout. The aims of this review are to highlight exciting and clinically pertinent advances in our understanding of how uric acid is reabsorbed by the kidney under the regulation of urate transporter (URAT)1 and other recently identified urate transporters; to discuss urate-lowering agents in clinical development; and to summarize the limitations of currently available antihyperuricemic drugs. The use of uricosuric drugs to treat hyperuricemia in patients with gout is limited by prior urolothiasis or renal dysfunction. For this reason, our discussion focuses on the development of the novel xanthine oxidase inhibitor febuxostat and modified recombinant uricase preparations.  相似文献   

20.
目的:探讨几种天然产物对高尿酸血症大鼠血清尿酸水平及尿酸排泄的影响.方法:对wistar大鼠灌胃氧嗪酸钾和酵母膏,制作高尿酸血症大鼠动物模型.灌胃给药褐藻糖胶、柠檬酸钾和东哥阿里提取物,2周后采血并进行代谢实验,检测血清尿酸、尿素氮,24小时尿液体积、pH值、尿酸浓度及总量,分析三种活性物质对机体尿酸水平、尿酸排泄、肾脏功能的影响.结果:三种物质均可显著降低高尿酸血症模型大鼠的血清尿酸水平,其中东哥阿里提取物组的24小时排泄尿酸总量较模型组显著降低,褐藻糖胶对实验大鼠的血清尿素氮水平升高有抑制作用.结论:三种活性物质对高尿酸血症大鼠血清尿酸浓度有降低作用,其中褐藻糖胶对肾脏功能有保护作用,从而保证尿酸的顺利排泄,而东哥阿里在降低血尿酸水平的同时,24小时尿液中排泄的尿酸总量也显著低于模型对照组,其机制可能与抑制尿酸生成有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号