首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Two paralogous groups of fatty acid-binding proteins (FABPs) have been described in vertebrate liver: liver FABP (L-FABP) type, extensively characterized in mammals, and liver basic FABP (Lb-FABP) found in fish, amphibians, reptiles, and birds. We describe here the toad Lb-FABP complete amino acid sequence, its X-ray structure to 2.5 A resolution, ligand-binding properties, and mechanism of fatty acid transfer to phospholipid membranes. Alignment of the amino acid sequence of toad Lb-FABP with known L-FABPs and Lb-FABPs shows that it is more closely related to the other Lb-FABPs. Toad Lb-FABP conserves the 12 characteristic residues present in all Lb-FABPs and absent in L-FABPs and presents the canonical fold characteristic of all the members of this protein family. Eight out of the 12 conserved residues point to the lipid-binding cavity of the molecule. In contrast, most of the 25 L-FABP conserved residues are in clusters on the surface of the molecule. The helix-turn-helix motif shows both a negative and positive electrostatic potential surface as in rat L-FABP, and in contrast with the other FABP types. The mechanism of anthroyloxy-labeled fatty acids transfer from Lb-FABP to phospholipid membranes occurs by a diffusion-mediated process, as previously shown for L-FABP, but the rate of transfer is 1 order of magnitude faster. Toad Lb-FABP can bind two cis-parinaric acid molecules but only one trans-parinaric acid molecule while L-FABP binds two molecules of both parinaric acid isomers. Although toad Lb-FABP shares with L-FABP a broad ligand-binding specificity, the relative affinity is different.  相似文献   

2.
Only one fatty acid-binding protein (FABP) from the liver of the lungfish (Lepidosiren paradoxa) was isolated and characterized. The sequence comparison of lungfish FABP with that of the known members of the liver FABP (L-FABP) and liver basic FABP (Lb-FABP) subfamilies indicates that it is more closely related to chicken, iguana, frog, axolotl, catfish, and shark Lb-FABPs than to mammalian and axolotl L-FABPs. Lungfish liver expression of this single Lb-FABP contrasts with the other fish studied so far which coexpress an Lb-FABP with heart-adipocyte and/or intestinal FABP types. The lungfish liver FABP expression pattern resembles that of tetrapods, which only expresses liver type FABPs. Lungfish Lb-FABP is one of the two FABPs reported to have a disulfide bridge. The molecular modeling of lungfish Lb-FABP predicts that nine of the conserved residues of Lb-FABPs are oriented toward the binding cavity, thus suggesting they are related to the protein binding characteristics.  相似文献   

3.
4.
The amino acid sequence of the fatty acid binding protein (FABP) from flight muscle of the locust, Schistocerca gregaria, has been determined. The sequence of the N-terminal 39 amino acid residues, determined by automated Edman degradation, was used to prepare a degenerate oligonucleotide that corresponded to amino acid residues 16-23. cDNA coding for FABP was constructed from flight muscle mRNA and amplified by the polymerase chain reaction using the degenerate oligonucleotide and an oligo dT-NotI primer adapter as primers. The amplification product was cloned and sequenced. Additionally, a cDNA library of flight muscle mRNA was prepared and screened with a 414-bp probe prepared from the clone. The primary structure of locust FABP was compared with the proteins in the Swiss protein databank and found to have significant homology with mammalian FABPs over the entire 133-residue sequence. The best match was versus human heart FABP (41% identity), attesting to the highly conserved nature of this protein. The results suggest that locust muscle FABP is a member of the lipid binding protein superfamily and may provide valuable insight into the evolution of this abundant protein class.  相似文献   

5.
The structures of intestinal and liver fatty acid binding proteins (FABPs) have been determined from an analysis of the nucleotide sequences of cloned cDNAs. The primary translation product of intestinal FABP mRNA contains 132 residues (Mr = 15 124). Liver FABP mRNA encodes a 127 amino acid polypeptide (Mr = 14 273). In vitro co-translational cleavage and translocation assays showed that neither sequence has a cleavable signal peptide or signal peptide equivalent - suggesting that the FABPs do not enter the secretory apparatus but rather are targeted to the cytoplasm. A variety of computational techniques were used to compare the two FABP sequences. The results indicate that liver and intestinal FABP are paralogous homologues. A superfamily of proteins was defined which includes the FABPs, the cellular retinol and retinoic acid binding proteins, the P2 protein of peripheral nerve myelin, and a polypeptide known as 422 whose synthesis is induced during differentiation of 3T3-L1 cells to adipocytes. No sequence homologies were noted between any of these small molecular weight cytosolic proteins and nonspecific lipid transfer protein (sterol carrier protein 2), phosphatidylcholine transfer protein, serum albumin or apolipoprotein AI. The FABPs may have structural features responsible for lipid-protein interactions that are not present in these non-homologous sequences. The distribution of intestinal and liver FABP mRNAs in adult rat tissues and the changes in FABP gene expression which occur during gastrointestinal development support the notion that these proteins are involved in fatty acid uptake, transport and/or compartmentalization. However, differences in tissue distribution and periods of non-coordinate expression during gastrointestinal ontogeny suggest that the two FABPs have distinct functions. The relationship between intestinal and liver FABPs and similar sized cytosolic FABPs isolated from brain, skeletal and cardiac muscle remains unclear. Recombinant DNA techniques combined with comparative sequence analyses offer a useful approach for defining unique as well as general structure-function relationships in this group of fatty acid binding proteins.  相似文献   

6.
Summary We have studied the effects of Efamol evening primrose oil (EPO) on fatty acid-binding proteins (L-FABP) of rat liver. EPO contains 72% cis-linoleic acid and 9% cis-gamma linolenic acid. EPO has been clinically used for treatment of a number of diseases in humans and animals. EPO is also known to lower cholesterol level in humans and animals. Feeding of an EPO supplemented diet to rats (n = 9) for 2 months decreases the oleate binding capacity of purified L-FABP of rat liver whereas the palmitate binding activity was increased by 38%. However, EPO feeding did not alter the L-FABP concentrations significantly as measured by using the fluorescence fatty acid probe, dansylamino undecanoic acid. Endogenous fatty acid analysis of L-FABPs revealed significant qualititative and quantitative changes in fatty acid pattern after EPO feeding. EPO feeding decreased the endogenous palmitate level by 53% and oleate level by 64% in L-FABPs and also EPO feeding decreased the total endogenous fatty acid content from 62 nanomole per mg of protein to 42 nanomole per mg of L-FABP (n = 3).  相似文献   

7.
8.
Rat liver fatty acid binding protein (L-FABP) was efficiently expressed in Escherichia coli and purified to homogeneity. The cDNA encoding L-FABP was ligated into the pTrc99A expression vector and expressed by induction with isopropyl-beta-d-thiogalactopyranoside under the control of the P(trc) promoter. Following an 18 h induction period, L-FABP constituted approximately 3% of the cytosolic protein. The protein could be purified to electrophoretic homogeneity (silver-stained polyacrylamide gel detection) by ammonium sulfate fractionation (65% saturation) of the soluble bacterial lysate followed by the chromatographic sequence of anion-exchange-->hydrophobic interaction-->anion-exchange chromatography. The recombinant protein displayed an isoelectric point of 7.0 and cross-reactivity with rabbit anti-(human L-FABP) polyclonal antibody. The ligand binding properties of the delipidated L-FABP were examined by titration with the fluorescent probe 1-anilino-8-naphthalene sulfonic acid and isothermal titration calorimetric analysis of oleic acid binding. The purified rat L-FABP displayed a binding stoichiometry of 2:1 (ANS:L-FABP) with dissociation constants (K(d)) of 1.7 and 15.5 microM for the high and low affinity binding sites, respectively. The K(d) values determined by ITC for oleic acid binding were 0.155 and 4.04 microM with a binding stoichiometry of approximately 2 mol of fatty acid/mol of protein. These physicochemical and binding properties are in agreement with those of L-FABP isolated from rat liver tissue.  相似文献   

9.
The rat heart contains an abundant cytosolic protein which binds long chain fatty acids. We have determined its primary structure by Edman degradation of peptides generated from chymotryptic, tryptic, and elastase digestions. This polypeptide (Mr = 14,992) contains 134 amino acids and has a blocked (acetylated) NH2 terminus. The sequence of rat heart fatty acid-binding protein (FABP) is remarkably similar to the murine adipocyte 422 protein and the P2 protein of peripheral nerve myelin. Computer-assisted alignment of heart FABP and 422 revealed that 82 of 132 comparable residues are identical (62%). There are 77 identities out of 131 possible matches between this protein and the human myelin P2 protein (59%). Similar comparisons demonstrate that heart FABP has significant homology to several other proteins which bind hydrophobic ligands. The rank of order of similarity to heart FABP is: 422 greater than myelin P2 greater than cellular retinoic acid-binding protein greater than cellular retinol-binding protein II greater than cellular retinol-binding protein greater than intestinal FABP greater than liver FABP. These eight sequences form a family of paralogous homologues. Heart FABP has a region of internal homology involving tandemly arrayed oligopeptides spanning residues 71-100 and 101-131. This feature is not found in the 422 and P2 sequences. The endogenous ligands bound by the 422, P2, and heart FABP sequences have not been defined. Interpretation of the biological significance of their structural similarities and differences will require information about their ligand specificities and affinities.  相似文献   

10.
Although expression of liver fatty acid binding protein (L-FABP) modulates cell growth, it is not known if L-FABP also alters cell morphology and differentiation. Therefore, pluripotent embryonic stem cells were transfected with cDNA encoding L-FABP and a series of clones expressing increasing levels of L-FABP were isolated. Untransfected ES cells, as well as ES cells transfected only with empty vector, spontaneously differentiated from rounded adipocyte-like to fibroblast-like morphology, concomitant with marked reduction in expression of stage-specific embryonic antigen (SSEA-1). These changes in morphology and expression of SSEA-1 were greatest in ES cell clones expressing L-FABP above a threshold level. Immunofluorescence confocal microscopy revealed that L-FABP was primarily localized in a diffuse-cytosolic pattern along with a lesser degree of punctate L-FABP expression in the nucleus. Nuclear localization of L-FABP was preferentially increased in clones expressing higherlevels of L-FABP. In summary, L-FABP expression altered ES cell morphology and expression of SSEA-1. Taken together with the fact that L-FABP was detected in the nucleus, these data suggested that L-FABP may play a more direct, heretofore unknown, role in regulating ES cell differentiation by acting in the nucleus as well as cytoplasm.  相似文献   

11.
Characterization of a cloned cDNA encoding rabbit myelin P2 protein   总被引:2,自引:0,他引:2  
Myelin P2 is a 14,800-Da cytosolic protein found in rabbit sciatic nerves. It belongs to a family of fatty acid binding proteins and shows a 72% amino acid sequence similarity to aP2/422, the adipocyte lipid binding protein, a 58% sequence similarity to rat heart fatty acid binding protein, and a 40% sequence similarity to cellular retinoic acid binding protein. In order to isolate cDNA clones representing P2, a cDNA library was constructed from poly(A+) RNA isolated from sciatic nerves of 10-day-old rabbit pups. By use of a mixed synthetic oligonucleotide probe based on the rabbit P2 amino sequence, 12 cDNA clones were selected from about 25,000 recombinants. Four of these were further characterized. They contained an open reading frame, which when translated, agreed at 128 out of 131 residues with the known rabbit P2 amino acid sequence. These cDNAs recognize a 1.9-kilobase mRNA present in sciatic nerve, spinal cord, and brain, but not present in liver or heart. The levels of P2 mRNA parallel myelin formation in sciatic nerve and spinal cord with maximal amounts being detected at about 15 postnatal days. This initial study will allow characterization of the P2 gene and its regulation, as well as further studies into the role of P2, the first metabolically active myelin-specific protein to be characterized at the genetic level.  相似文献   

12.
Fatty acid-binding proteins (FABP) are abundant cytosolic proteins whose level is responsive to nutritional, endocrine, and a variety of pathological states. Although FABPs have been investigatedin vitro for several decades, little is known of their physiological function. Liver L-FABP binds both fatty acids and cholesterol. Competitive binding analysis and molecular modeling studies of L-FABP indicate the presence of two ligand binding pockets that accomodate one fatty acid each. One fatty acid binding site is identical to the cholesterol binding site. To test whether these observations obtainedin vitro were physiologically relevant, the cDNA encoding L-FABP was transfected into L-cells, a cell line with very low endogenous FABP and sterol carrier proteins. Uptake of both ligands did not differ between control cells and low expression clones. In contrast, both fatty acid uptake and cholesterol uptake were stimulated in the high expression cells. In high expression cells, uptake of fluorescent cis-parinaric acid was enhanced more than that of trans-parinaric acid. This is consistent with the preferential binding of cis-fatty acids to L-FABP but in contrast to the preferential binding of trans-parinaric acid to the L-cell plasma membrane fatty acid transporter (PMFABP). These data show that the level of cytosolic fatty acids in intact cells can regulate both the extent and specificity of fatty acid uptake. Last, sphingomyelinase treatment of L-cells released cholesterol from the plasma membrane to the cytoplasm and stimulated microsomal acyl-CoA: cholesteryl acyl transferase (ACAT). This process was accelerated in high expression cells. These observations show for the first time in intact cells that L-FABP, a protein most prevalent in liver and intestine where much fat absorption takes place, may have a role in fatty acid and cholesterol absorption.Abbreviations FABP fatty acid-binding protein - L-FABP liver fatty acid-binding protein - I-FABP intestinal fatty acid-binding protein - H-FABP heart fatty acid-binding protein - A-FABP adipocyte fatty acid-binding protein - PMFABP plasma membrane fatty acid-binding protein - SCP-2 sterol carrier protein-2 - Dehydroergosterol (DHE) d-5,7,9(11),22-ergostatetraene-3b-ol - cis-parinaric acid-9Z, 11E, 13E, 15Z-octatetraenoic acid - trans parinaric acid, 9E, 11E, 13E, 14E-octatetraenoic acid - BSA bovine serum albumin - KRH Krebs-Ringer-Henseleit buffer  相似文献   

13.
Three fatty acid-binding proteins (FABPs) from the liver of the shark Halaetunus bivius were isolated and characterized: one of them belongs to the liver-type FABP family and the other two to the heart-type FABP family. The complete primary structure of the first FABP, and partial primary structures of the two others, were determined. The liver-type FABP constitutes 69% of the total FABPs, and its amino acid sequence presents the highest identity with chicken, catfish, iguana and elephant fish liver basic FABPs. The L-FABP protein has low affinity for palmitic and oleic acids and high affinity for linoleic and arachidonic acids and other hydrophobic ligands, all of them important for the metabolic functions of the liver. In contrast, both heart-type FABPs have the highest affinity for palmitic acid, the principal fatty acid mobilized from fat deposits for beta-oxidation.  相似文献   

14.
The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent.  相似文献   

15.
We report for the first time the complete amino acid sequence for the growth hormone dependent insulin-like growth factor binding protein (IGFBP-3) in the rat. A human IGFBP-3 clone was generated using the polymerase chain reaction (PCR) and used to screen a rat liver cDNA library. cDNA clones of the rat IGFBP-3 were isolated and the full amino acid sequence deduced. The sequence begins with a putative, 26 amino acid signal peptide followed by a 265 amino acid binding protein. The amino acid sequence is over 80% homologous with the equivalent human IGFBP-3 form and shows complete conservation of 18 cysteine residues that are clustered at the amino and carboxy ends of the protein. IGFBP-3 is the binding subunit of the major circulating IGFBP in the rat, and hence the availability of precise structural data and cDNA probes provides an important opportunity for a detailed study of the control of IGFBP-3 synthesis at the level of gene expression.  相似文献   

16.
Two different photoaffinity analogs of 4-hydroxy coumarin, 3-(p-azidobenzyl)-4-hydroxycoumarin (AzBHC) and 3-(4-azido-5-iodosalicylamido)-4-hydroxycoumarin (AzISAHC), are being used in the identification of warfarin-binding proteins present in mammalian tissue (Myszka, D. G., and Swenson, R. P. (1990) Biochem. Biophys. Res. Commun. 172, 415-422; Myszka, D. G., and Swenson, R. P. (1991) J. Biol. Chem. 266, 4789-4797). In this study, [14C]AzBHC, but not [125I]AzISAHC, was observed to specifically label a 15,000-dalton protein present in both the microsomal and cytosolic fractions of rat liver. Pretreatment of the crude protein samples with warfarin or dicoumarol completely protected the 15-kDa protein from modification by [14C]AzBHC, indicating that this photoaffinity reagent is specifically labeling a coumarin-binding protein. 4-Hydroxycoumarin itself and AzISAHC were unable to block the incorporation of this photoaffinity probe. The 15-kDa protein was isolated by two-dimensional electrophoresis and subjected to amino-terminal sequence analysis. The first 20 amino acid residues analyzed were found to be identical with the amino-terminal sequence of rat liver fatty acid-binding protein (L-FABP) (Gordon J. I., Alpers, D. H., Ockner, R. K., and Strauss, A. W. (1983) J. Biol. Chem. 258, 3356-3363). Photoaffinity labeling and protection experiments carried out on purified preparations of L-FABP paralleled the labeling results obtained in the microsomes and cytosol, confirming that L-FABP is capable of specifically binding AzBHC, warfarin, and dicoumarol. Oleic acid, an established ligand for L-FABP, can compete with the binding of the photoaffinity probe; however, it was less effective in protecting the protein than warfarin. The specificity of labeling of crude liver fractions by warfarin photoaffinity analogs reported here as well as the high concentration of FABP in liver tissue together suggest that this protein may represent a major hepatic receptor responsible for the uptake and/or transport of various oral 4-hydroxycoumarin-based anticoagulant drugs.  相似文献   

17.
Binding and proximity relationships of fatty acids with recombinant rat liver fatty acid-binding protein (L-FABP) and intestinal fatty acid-binding protein (I-FABP) were studied with absorption and fluorescence spectroscopy. Protein aromatic amino acids were examined in the absence and presence of bound fatty acid. Second derivative absorbance spectroscopy of the apo- and holoproteins suggested that fatty acid binding altered the conformation of L-FABP, but not of I-FABP. Fatty acid binding also blocked the accessibility of L-FABP tyrosine and I-FABP tryptophan to Stern-Volmer quenching by acrylamide, indicating that these amino acids were present in the fatty acid-binding pocket. Forster energy transfer from I-FABP tryptophan to bound cis-parinaric acid resulted in quenching of tryptophan lifetime and appearance of sensitized lifetime of bound cis-parinaric acid. The calculated donor-acceptor distances were 16.9 +/- 0.6 and 19.2 +/- 0.3 A for I-FABP and L-FABP, respectively. Absorbance spectral shifts and ratios of fluorescence excitation maxima indicated that the parinaric acid microenvironment in the fatty acid-binding site of I-FABP was much less polar than that of L-FABP. Parinaric acids displayed similar rotational correlation time and limiting anisotropy when bound to I-FABP and to L-FABP. These results are consistent with a close proximity of bound fatty acids to the tyrosine and tryptophan residues and with immobilization of the polyene fatty acids in the fatty acid-binding site(s) of L-FABP and I-FABP. The two proteins differ in that only L-FABP has two fatty acid-binding sites and appears to undergo significant conformational change upon fatty acid binding.  相似文献   

18.
Murine adipocyte and rat heart fatty acid binding proteins (FABP) are closely related members of a family of cytosolic proteins which bind long-chain free fatty acids (ffa). The physical and chemical characteristics of the fatty acid binding sites of these proteins were studied using a series of fluorescent analogues of stearic acid (18:0) with an anthracene moiety covalently attached at seven different positions along the length of the hydrocarbon chain (AOffa). Previously, we used these probes to investigate the binding site of rat liver FABP (L-FABP) [Storch et al. (1989) J. Biol. Chem. 264, 8708-8713]. Here we extend those studies to adipocyte and heart FABP, two members of the FABP family which share a high degree of sequence homology with each other (62% identity) but which are less homologous with L-FABP (approximately 30%). The results show that the fluorescence emission spectra of AOffa bound to adipocyte FABP (A-FABP) are blue-shifted relative to heart FABP (H-FABP), indicating that AOffa bound to A-FABP are held in a more constrained configuration. For both proteins, constraint on the bound ffa probe is highest at the midportion of the acyl chain. Ffa are bound in a hydrophobic environment in both proteins. Excited-state lifetimes and fluorescence quantum yields suggest that the binding site of H-FABP is more hydrophobic than that of A-FABP. Nevertheless, acrylamide quenching experiments indicate that ffa bound to H-FABP are more accessible to the aqueous environment than are A-FABP-bound ffa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The stomach is stimulated by an enterooxyntin factor in a delayed response to feeding, resulting in an increase in both gastric acid and pepsinogen secretion. We have previously reported on the identity of such a factor from the porcine ileum (Wider, M. D., Vinik, A. I., and Heldsinger, A. (1984) Endocrinology 115, 1484-1491). This protein, termed gastrotropin, is localized to the distal region of the ileum where it constitutes less than 0.1% of the cytosolic protein. We have completed the primary structure of porcine gastrotropin by Edman degradation and mass spectrometry. Gastrotropin (Mr = 14,054) contains 127 amino acid residues and has a blocked (acetylated) alanine at its NH2 terminus. The sequence of porcine gastrotropin is similar to rat liver fatty acid-binding protein (FABP), with 44 of 127 residues being identical (35%). Homology with other members of the FABP family is significantly less apparent, with the order of similarity being liver FABP greater than heart FABP greater than retinol-binding protein greater than intestine FABP. The sequences of the NH2-terminal regions of these proteins account for virtually all of the homology; there are 9 conserved residues common to all five proteins. Gastrotropin represents the first member of the FABP family which has an extracellular function.  相似文献   

20.
Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the promiscuous binding and transport properties of L-FABP, we investigated structure and dynamics of human L-FABP with and without bound ligands by means of heteronuclear NMR. The overall conformation of human L-FABP shows the typical β-clam motif. Binding of two oleic acid (OA) molecules does not alter the protein conformation substantially, but perturbs the chemical shift of certain backbone and side-chain protons that are involved in OA binding according to the structure of the human L-FABP/OA complex. Comparison of the human apo and holo L-FABP structures revealed no evidence for an "open-cap" conformation or a "swivel-back" mechanism of the K90 side chain upon ligand binding, as proposed for rat L-FABP. Instead, we postulate that the lipid binding process in L-FABP is associated with backbone dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号