首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Higher harmonics of alternating current in bilayer lipid membranes caused by sinusoidal voltage applied to the membrane were measured. The bilayer lipid membranes were prepared from diphytanoylphosphatidylcholine in n-decane and n-tetradecane, and measurements were conducted with the aid of an analog-to-digital converter of 16th category. Sinusoidal voltage was formed using a digital-to-analog converter of the 16th category. The dynamic region of measurements was up 90 dB. The results of measurements were used to determine the alpha and beta coefficients of the expansion of membrane capacity C in terms of membrane voltage U C = C0 (1 + alphaU2 + betaU4). We showed in the framework of the electrostriction model that the relation between the alpha and beta coefficients characterizes the inhomogeneity of bilayer lipid membrane with respect to its thickness and Young modulus of elasticity.  相似文献   

2.
This paper describes the application of chronopotentiometry to lipid bilayer research. The experiments were performed on bilayer lipid membranes composed of phosphatidylcholine and cholesterol and formed using the painting technique. Chronopotentiometric (U = f(t)) measurements were used to determine the membrane capacitance, resistance, and breakdown voltage as well as pore conductance and diameter.  相似文献   

3.
The binding of cAMP to the chemotactic cAMP receptor in intact Dictyostelium discoideum cells and isolated membranes is strongly inhibited by unsaturated fatty acids. In isolated membranes, cis-unsaturated fatty acids decreased the number of accessible cAMP binding sites, without significantly altering their affinity. Most potent were C18 and C20 cis-poly unsaturated fatty acids, like arachidonic acid, linoleic acid and linolenic acid. Trans-unsaturated fatty acid was less potent than its cis isomer, while saturated fatty acids did not affect the binding of cAMP to receptors at all. Oxidation reactions were not important for the effect of unsaturated fatty acids. When membranes were preincubated with millimolar concentrations of Ca2+, the effect of unsaturated fatty acids was strongly diminished. Mg2+ was ineffective. Ca2+, if presented after the incubation of membranes with unsaturated fatty acids, did not reverse the inhibitory effect. The specificity of the fatty acid effect, and the interference with Ca2+, but not Mg2+, suggest that the properties of the cAMP receptor are changed as a result of alterations in the lipid bilayer structure of the membrane.  相似文献   

4.
The dependence of the surface potential difference (ΔU), transversal elasticity module (E1) and membrane conductivity (G0) on the concentrations of the antiviral drugs, rimantadine and amantadine was studied in the planar bilayer lipid membrane system. The method used was based on independent measurements of the second and third harmonics of the membrane capacitance current. The binding constants of bilayer lipid membranes obtained from the drug adsorption isotherms were 2.1 · 105 M?1 and 1.3 · 104 M?1 for rimantadine and amantadine, respectively. The changes in G0 took place only after drug adsorption saturation had been achieved. The influence of rimantadine and amantadine on the interaction of bilayer lipid membranes with matrix protein from influenza virus was also investigated. The presence of 70 μg/ml rimantadine in the bathing solution resulted in an increase in the concentration of M-protein at which the adsorption and conductance changes were observed. The effects of amantadine were similar to those of rimantadine but required a higher critical concentration of amantadine. The results obtained suggest that the antiviral properties of rimantadine and amantadine may be related to the interaction of these drugs with the cell membrane, which can affect virus penetration into the cell as well as maturation of the viral particle at the cell membrane.  相似文献   

5.
In our study we investigated hemispherical phospholipid bilayer membranes and phospholipid vesicles made from hexadecaprenyl monophosphate (C80-P), dioleoylphosphatidylocholine (DOPC) and their mixtures by voltammetric and transmission electron microscopy (TEM) techniques. The current-voltage characteristics, the membrane conductance-temperature relationships and the membrane breakdown voltage have been measured for different mixtures of C80-P/DOPC. The membrane hydrophobic thickness and the activation energy of ion migration across the membrane have been determined. Hexadecaprenyl monophosphate decreased in comparison with DOPC bilayers, the membrane conductance, increased the activation energy and the membrane breakdown voltage for the various value of C80-P/DOPC mole ratio, respectively. The TEM micrographs of C80-P, DOPC and C80-P/DOPC lipid vesicles showed several characteristic structures, which have been described. The data indicate that hexadecaprenyl monophosphate modulates the surface curvature of the membranes by the formation of aggregates in liquid-crystalline phospholipid membranes. We suggest that the dynamics and conformation of hexadecaprenyl monophosphate in membranes depend on the transmembrane electrical potential. The electron micrographs indicate that polyprenyl monophosphates with single isoprenyl chains form lipid vesicular bilayers. The thickness of the bilayer, evaluated from the micrographs, was 11 ± 1 nm. This property creates possibility of forming primitive bilayer lipid membranes by long single-chain polyprenyl phosphates in abiotic conditions. It can be the next step in understanding the origin of protocells. Received: 10 January 2000/Revised: 7 June 2000  相似文献   

6.
Summary From the mitochondrial Ca2+-transporting glycolipoprotein (GLP) the lipid was isolated which induced Ca2+-translocation through bilayer lipid membranes. Electroconductivity of modified phospholipid membranes in the presence of CaCl2 is increased 150-200 times. At 10-fold CaCl2 gradient a generation of membrane potential is observed close to its theoretical value. It is shown that the lipid forms separate conductivity channels of 10 and 20 pS in the bilayer. The mode of action of GLP in the membrane is proposed It is assumed that the carbohydrate part of GLP is a selective receptor-accumulator for Ca2−, whereas the function of the lipid component consists in forming channels in the bilayer.  相似文献   

7.
S H White 《Biophysical journal》1970,10(12):1127-1148
A method is described for measuring the specific capacitance (Cm) of lipid bilayer membranes with an estimated experimental error of only 1%. The gross capacitance was measured with an AC Wheatstone bridge and a photographic technique was used to determine the area of thin membrane. The results of measurements on oxidized cholesterol-decane membranes formed in 1 × 10-2 M KCl show that Cm depends upon temperature, voltage, time, and the age of the bulk membrane solutions. For a freshly thinned membrane (from 5 week old solution), Cm increases exponentially from an initial value of 0.432 ±0.021 (SD) μF/cm2 with a time constant of ~15 min. A 100 mv potential applied across the membrane for 10-20 min prior to making measurements eliminated this time dependence and produced final-state membranes. Cm of final-state membranes depends upon applied voltage (Va) and obeys the equation Cm = C0 + βVa2 where Va VDC + VrmsAC. C0 and β depend upon temperature; C0 decreases linearly with temperature while β increases linearly. At 20°C, C0 = 0.559 ±0.01 (SD) μF/cm2 and β = 0.0123 ±0.0036 (SD) (μF/cm2)/(mv2) and at 34°C, C0 = 0.472 ±0.01 and β = 0.0382 ±0.0039. These variations in Cm are interpreted as resulting from thickness changes. The possibility that they result from diffuse layer and/or membrane dielectric phenomena is discussed and found to be unlikely. The results are discussed in terms of membrane stability by constructing hypothetical potential energy vs. thickness curves.  相似文献   

8.
Phenytoin (PHT) modified the fluorescent characteristics of anthroyloxy-fatty acids in synaptosomal membranes. Association of PHT with synaptosomal membranes caused the greatest change when the fluorescent probe was located at the 6-carbon position of N-(anthroyloxy)stearic acid and was incorporated into the membranes. Phenytoin and 6-(anthroyloxy)stearic acid compete for high affinity binding regions which are probably lipid domains within the membrane. Phenytoin has a weaker association with the sites than the fluorescent fatty acids. Divalent cations, e.g. Mg2+ or Ca2+, are required to observe maximal change in polarization of fluorescence of fatty acid probes in the presence of PHT. It is proposed that the membrane lipid bilayer reorganizes to accommodate exogenous compounds, such as phenytoin or the fatty acid probe in order to permit the most efficient packing of lipids. This reorganization of the lipid bilayer may influence membrane enzyme activities and ion channels.  相似文献   

9.
Megathura crenulata hemocyanin forms ionic channels in planar lipid bilayer membranes. It was found that hemocyanin is more potent as a channel former if TbCl3 is added to the bathing solution. Furthermore membranes separating symmetrical TbCl3 solutions show a pore formation rate which depends exponentially on the applied voltage, positive potentials favouring the insertion of new channels. The slope of this voltage dependence, which gives a measure of the effective charge displaced during the incorporation of one channel, increases and saturates with TbCl3 concentration. The dose response curve indicates that binding of Tb3+ to the phosphatidylcholine bilayer is involved in creating the effective charge.  相似文献   

10.
The membrane-bound conformation of a cell-penetrating peptide, penetratin, is investigated using solid-state NMR spectroscopy. The 13C chemical shifts of 13C, 15N-labeled residues in the peptide indicate a reversible conformational change from β-sheet at low temperature to coil-like at high temperature. This conformational change occurs for all residues examined between positions 3 and 13, at peptide/lipid molar ratios of 1:15 and 1:30, in membranes with 25-50% anionic lipids, and in both saturated DMPC/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylchloline/1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) membranes and unsaturated POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol) membranes. Thus, it is an intrinsic property of penetratin. The coil state of the peptide has C-H order parameters of 0.23-0.52 for Cα and Cβ sites, indicating that the peptide backbone is unstructured. Moreover, chemical shift anisotropy lineshapes are uniaxially averaged, suggesting that the peptide backbone undergoes uniaxial rotation around the bilayer normal. These observations suggest that the dynamic state of penetratin at high temperature is a structured turn instead of an isotropic random coil. The thermodynamic parameters of this sheet-turn transition are extracted and compared to other membrane peptides reported to exhibit conformational changes. We suggest that the function of this turn conformation may be to reduce hydrophobic interactions with the lipid chains and facilitate penetratin translocation across the bilayer without causing permanent membrane damage.  相似文献   

11.
The lipid-containing membrane of Rauscher murine leukemia virus was studied using stearic acid spin labels with the nitroxide ring on the C5 and C16 positions. The environment of the C5 spin label was found to be much more rigid than that of the C16 spin label. This result, which parallels similar observations in red cell membranes and influenza virus, suggests that the lipid phase of Rauscher murine leukemia virus is arranged in a bilayer.  相似文献   

12.
Low-intensity ultrasound can modulate action potential firing in neurons in vitro and in vivo. It has been suggested that this effect is mediated by mechanical interactions of ultrasound with neural cell membranes. We investigated whether these proposed interactions could be reproduced for further study in a synthetic lipid bilayer system. We measured the response of protein-free model membranes to low-intensity ultrasound using electrophysiology and laser Doppler vibrometry. We find that ultrasonic radiation force causes oscillation and displacement of lipid membranes, resulting in small (<1%) changes in membrane area and capacitance. Under voltage-clamp, the changes in capacitance manifest as capacitive currents with an exponentially decaying sinusoidal time course. The membrane oscillation can be modeled as a fluid dynamic response to a step change in pressure caused by ultrasonic radiation force, which disrupts the balance of forces between bilayer tension and hydrostatic pressure. We also investigated the origin of the radiation force acting on the bilayer. Part of the radiation force results from the reflection of the ultrasound from the solution/air interface above the bilayer (an effect that is specific to our experimental configuration) but part appears to reflect a direct interaction of ultrasound with the bilayer, related to either acoustic streaming or scattering of sound by the bilayer. Based on these results, we conclude that synthetic lipid bilayers can be used to study the effects of ultrasound on cell membranes and membrane proteins.  相似文献   

13.
The behaviour of lipid bilayer membranes, made of oxidized cholesterol, and UO22+-modified azolectin membranes in a high electric field has been investigated using the voltage clamp method. When a voltage pulse is applied to the membrane of these compositions, the mechanical rupture of the membranes is preceded by a gradual conductance increase which remains quite reversible till a certain moment. The voltage drop at this reversible stage of breakdown leads to a very rapid (characteristic time of less than 5 μs) decrease in the membrane conductance. At repeated voltage pulses of the same amplitude with sufficient intervals between them (approx. 10 s), the current oscillograms reflecting the reversible resistance decrease are well reproduced on the same membrane. The time of attainment of the predetermined level of the membrane conductance is strongly dependent on voltage. At different stages of breakdown we have investigated changes in the conductance of UO22+-modified membrane after the application of two-step voltage pulses, the kinetics of development of the reversible decrease in the membrane resistance in solutions of univalent and divalent ions, and also the influence of sucrose and hemoglobin on the current evolution. The relationship between the reversible conductance increase, the reversible electrical breakdown [15] and the rupture of membrane in an electric field is discussed. We propose the general interpretation of these phenomena, based on the representation of the potential-dependent appearance in the membrane of pores, the development of which is promoted by an electric field.  相似文献   

14.
The Mr ≈ 100 000 α subunit was prepared from highly purified lamb kidney (Na++ K+)-ATPase. Its N-terminal sequence is Gly-Arg-Asx-Lys-Tyr-Glu. The α subunit was S-carboxymethylated, succinylated, and cleaved at its 40 arginine residues with trypsin. Four major, well-differentiated peptide fractions (A to D) were obtained by chromatography of the digest on a Sephadex G-50 column. Fraction A eluted at the void volume of the column and contained aggregated, very hydrophobic peptides, possibly from regions of α that are buried within the membrane lipid bilayer in the native enzyme. Fractions B to D, which together accounted for about 75% of the total protein, contained water-soluble peptides. To test the feasibility of using antibodies to identify and purify specific peptides of α subunit, studies were carried out using antibodies to native (Na++ K+)-ATPase. Carboxymethylation and succinylation did not significantly decrease total antibody binding to α subunit, although the affinity of the anti-(Na+ + K+)-ATPase antibodies for α subunit was reduced by about 50%. The tryptic peptides of a subunit also retain significant immunochemical reactivity. Fractions A, B and C (but not D) of the digest all bind antibodies. To characterize further the tryptic digest, 16 peptides from fraction D were isolated and sequence studies on these were carried out.  相似文献   

15.
The molecular organization and functional activity of porins isolated from the outer membrane (OM) of the Yersinia enterocolitica and three phylogenetically close nonpathogenic Yersinia species (Y. intermedia, Y. kristensenii, and Y. frederiksenii) cultured at 6–8°C were comparatively studied for the first time. The proteins were isolated in two molecular forms (trimeric and monomeric), and their spatial structures were characterized by the methods of optical spectroscopy, CD and intrinsic protein fluorescence. The studied porins were shown to belong to the β-structural proteins (they have 59–96% total β structures and 0–17% α helices). The spatial structures of the proteins were demonstrated to depend on the nature of the detergent used for solubilization. Unlike the enterobacterial pore-forming proteins, the porin trimers are less stable to sodium dodecyl sulfate (SDS). The spatial structures of the porins become more compact after the substitution of octyl β-D-glucoside for SDS: the content of β structures increases and the accessibility of Trp residues to solvent decreases. It was established with the use of the technique of bilayer lipid membranes that the functional properties of the porins are similar to those of the OmpF proteins of Gram-negative bacteria. Trimers are functionally active forms of the porins. Special features of the pore-forming activity of the Yersinia porins were revealed to depend on the microorganism species and the value of the membrane potential.  相似文献   

16.
《Biophysical journal》2019,116(9):1701-1718
KirBac1.1 is a prokaryotic inward-rectifier K+ channel from Burkholderia pseudomallei. It shares the common inward-rectifier K+ channel fold with eukaryotic channels, including conserved lipid-binding pockets. Here, we show that KirBac1.1 changes the phase properties and dynamics of the surrounding bilayer. KirBac1.1 was reconstituted into vesicles composed of 13C-enriched biological lipids. Two-dimensional liquid-state and solid-state NMR experiments were used to assign lipid 1H and 13C chemical shifts as a function of lipid identity and conformational degrees of freedom. A solid-state NMR temperature series reveals that KirBac1.1 lowers the primary thermotropic phase transition of Escherichia coli lipid membranes while introducing both fluidity and internal lipid order into the fluid phases. In B. thailandensis liposomes, the bacteriohopanetetrol hopanoid, and potentially ornithine lipids, introduce a similar primary lipid-phase transition and liquid-ordered properties. Adding KirBac1.1 to B. thailandensis lipids increases B. thailandensis lipid fluidity while preserving internal lipid order. This synergistic effect of KirBac1.1 in bacteriohopanetetrol-rich membranes has implications for bilayer dynamic structure. If membrane proteins can anneal lipid translational degrees of freedom while preserving internal order, it could offer an explanation to the nature of liquid-ordered protein-lipid organization in vivo.  相似文献   

17.
The proteins of the outer membrane from rat liver mitochondria have been subfractionated by means of density gradient centrifugation. The different polypeptides of the membrane were incorporated into asolectin vesicles and black lipid membranes. It was observed that a polypeptide of Mr 32 000 renders asolectin vesicles permeable to ADP and forms pores in bilayer membrane. These pores showed the same properties as the channels which are formed in the lipid membrane after addition of Triton X-100 solubilized complete outer membrane. The properties of the pore are as follows: (1) The formation of pores depends on the type of phospholipid used for the preparation of the black membranes. (2) The pore is inserted asymmetrically into the membrane. (3) The pore is voltage gated but does not switch off completely at higher voltages. The pore seems to show different conductance states decreasing conductance being observed at increasing voltage. The implications of these findings for the regulation of transport processes across the outer membrane are discussed.  相似文献   

18.
1. (Na+ +K+)-ATPase from rectal gland of Squlus acanthias contains 34 SH groups per mol (Mr 265000). 15 are located on the α subunit (Mr 106 000) and two on the β subunit (Mr 40 000). The β subunit also contains one disulphide bridge. 2. The reaction of (Na+ +K+)-ATPase with N-ethylmaleimide shows the existence of at least three classes of SH groups. Class I contains two SH groups on each α subunit and one on each β subunit. Reaction of these groups with N-methylmaleimide in the presence of 40% glycerol or sucrose does not alter the enzyme activity. Class II contains four SH groups on each α subunit, and the reaction of these groups with 0.1 mM N-ethylmaleimide in the presence of 150 mM K+ leads to an enzyme species with about 16% activity. The remaining enzyme activity can be completely abolished by reaction with 5–10 nM N-ethylmaleimide, indicating a third class of SH groups (Class III). This pattern of inactivation is different from that of the kidney enzyme, where only one class of SH groups essential to activity is observed. 3. It is also shown that N-ethylmaleimide and DTNB inactivate by reacting with the same Class II SH groups. 4. Spin-labelling of the (Na+ +K+)-ATPase with a maleimide derivative shows that Class II groups are mostly buried in the membrane, whereas Class I groups are more exposed. It is also shown that spin label bound to the Class I groups can monitor the difference between the Na+- and K+-forms of the enzyme.  相似文献   

19.
《Biophysical journal》2020,118(5):1044-1057
Aimed at reproducing the results of electrophysiological studies of synaptic signal transduction, conventional models of neurotransmission are based on the specific binding of neurotransmitters to ligand-gated receptor ion channels. However, the complex kinetic behavior observed in synaptic transmission cannot be reproduced in a standard kinetic model without the ad hoc postulation of additional conformational channel states. On the other hand, if one invokes unspecific neurotransmitter adsorption to the bilayer—a process not considered in the established models—the electrophysiological data can be rationalized with only the standard set of three conformational receptor states that also depend on this indirect coupling of neurotransmitters via their membrane interaction. Experimental verification has been difficult because binding affinities of neurotransmitters to the lipid bilayer are low. We quantify this interaction with surface plasmon resonance to measure equilibrium dissociation constants in neurotransmitter membrane association. Neutron reflection measurements on artificial membranes, so-called sparsely tethered bilayer lipid membranes, reveal the structural aspects of neurotransmitters’ association with zwitterionic and anionic bilayers. We thus establish that serotonin interacts nonspecifically with the membrane at physiologically relevant concentrations, whereas γ-aminobutyric acid does not. Surface plasmon resonance shows that serotonin adsorbs with millimolar affinity, and neutron reflectometry shows that it penetrates the membrane deeply, whereas γ-aminobutyric is excluded from the bilayer.  相似文献   

20.
Ketterer, et al. (1971) have suggested that a combination of electrostatic and chemical interactions may cause hydrophobic ions absorbed within a bilayer lipid membrane to reside in two potential wells, each close to a membrane surface. The resulting two planes of charges would define three regions of membrane dielectric: two identical outer regions each between a plane of absorbed charges and the plane of closest approach of ions in the aqueous phase; and the inner region between the two planes of adsorbed charges. The theory describing charge translocation across the inner region is based on a simple three-capacitor model. A significant theoretical conclusion is that the difference between the voltage across the inner region, Vi, and the voltage across the entire membrane, Vm, is directly proportional to the amount of charge that has flowed in a voltage clamp experiment. We demonstrate that we can construct an “inner voltage clamp” that can maintain, with positive feedback, a constant inner voltage, Vi. The manifestation of proper feedback is that the clamp current (after a voltage step) will exhibit pure (i.e., single time-constant) exponential decay, because the voltage dependent rate constants governing translocation will be independent of time. The “pureness” of the exponential is maximized when the standard deviation of the least-square fit of the appropriate exponential equation to the experimental data is minimized. The concomitant feedback is directly related to the capacitances of the inner and outer membrane regions, Ci and Co.

Experimental results with tetraphenylborate ion adsorbed in bacterial phosphatidylethanolamine/n-decane bilayers indicate Ci ~ 5 · 10-7F/cm2 and Co ≈ 5 · 10-5F/cm2.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号