首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions for extracellular production of vitamin B6 compounds (B6), especially pyridoxal 5'-phosphate (PLP) by Schizosaccharomyces pombe leu1 strain were examined. The productivity was dependent on concentration of L-leucine in the culture medium: 30 mg/l gave the highest concentrations of total B6 and PLP. The viable cells harvested at different growth phases showed different productivity: middle and late exponential phase cells showed the highest productivity of total B6 and PLP, respectively. D-Glucose (1%, w/v) among other sugars gave the best productivity. Supplementation of air and ammonium sulfate significantly increased extracellular production of PLP. Superoxide anion producers, menadione and plumbagin, and H2O2 increased the productivity of PLP. Cycloheximide inhibited the increase of PLP by the oxidative stress and in contrast, increased pyridoxine.  相似文献   

2.
BACKGROUND: We report that inadequate vitamin B-6 status of Filipino mothers, assessed by erythrocyte aspartate aminotransferase activity coefficient (EAST-AC), is associated with an increased risk for isolated cleft lip with or without cleft palate (CL/P) in their children. Its association with the status assessed by plasma pyridoxal-5'-phosphate (PLP) concentrations is unknown. METHODS: In a case-control study in the Philippines including 46 cases (mothers of a child with CL/P) and 392 controls (mothers of an unaffected child), we evaluated the association between the risk for CL/P and maternal vitamin B-6 status assessed by PLP and EAST-AC. RESULTS: The ORs of CL/P were estimated by classifying mothers by PLP (>30, 20-30, and <20 nmol/L). Using the highest PLP group as the reference, ORs (95% CIs) were 1.03 (0.45-2.37) and 2.66 (1.30-5.50) for the middle and lowest groups, respectively (p trend = .01). In multivariate models controlling for various covariates including folate, the risk for CL/P was approximately 12 times higher in mothers with inadequate vitamin B-6 status, assessed by both PLP and EAST-AC values, compared to those with adequate status by both values. CONCLUSIONS: Inadequate vitamin B-6 status assessed by maternal PLP and EAST-AC values independently and both combined was associated with an increased risk for CL/P. The association was highest when both values were considered, suggesting that the measurement of both PLP and EAST-AC provides better assessment of vitamin B-6 status than either measurement alone.  相似文献   

3.
Pyridoxal (PL) reductase encoded by the plr1(+) gene practically catalyzes the irreversible reduction of PL by NADPH to form pyridoxine (PN). The enzyme has been suggested to be involved in the salvage synthesis of pyridoxal 5'-phosphate (PLP), a coenzyme form of vitamin B(6), or the excretion of PL as PN from yeast cells. In this study, a PL reductase-disrupted (plr1 Delta) strain was constructed and its phenotype was examined. The plr1 Delta cells showed almost the same growth curve as that of wild-type cells in YNB and EMM media. In EMM, the plr1 Delta strain became flocculent at the late stationary phase for an unknown reason. The plr1 Delta cells showed low but measurable PL reductase activity catalyzed by some other protein(s) than the enzyme encoded by the plr1(+) gene, which maintained the flow of "PL --> PN --> PNP --> PLP" in the salvage synthesis of PLP. The total vitamin B(6) and pyridoxamine 5'-phosphate contents in the plr1 Delta cells were significantly lower than those in the wild-type ones. The percentages of the PLP amount as to the other vitamin B(6) compounds were similar in the two cell types. The amount of PL in the culture medium of the disruptant was significantly higher than that in the wild-type. In contrast, PN was much higher in the latter than the former. The plr1 Delta cells accumulated a 6.1-fold higher amount of PL than the wild-type ones when they were incubated with PL. The results showed that PL reductase encoded by the plr1(+ )gene is involved in the excretion of PL after reducing it to PN, and may not participate in the salvage pathway for PLP synthesis.  相似文献   

4.
Kim DW  Kim CK  Choi SH  Choi HS  Kim SY  An JJ  Lee SR  Lee SH  Kwon OS  Kang TC  Won MH  Cho YJ  Cho SW  Kang JH  Kim TY  Lee KS  Park J  Eum WS  Choi SY 《Biochimie》2005,87(5):481-487
Pyridoxal kinase (PK) catalyses the phosphorylation of vitamin B6 to pyridoxal-5'-phosphate (PLP). A human brain PK gene was fused with a gene fragment encoding the HIV-1 Tat protein transduction domain (RKKRRQRRR) in a bacterial expression vector to produce a genetic in-frame Tat-PK fusion protein. The expressed and purified Tat-PK fusion proteins transduced efficiently into PC12 cells in a time- and dose-dependent manner when added exogenously in culture media. Once inside the cells, the transduced Tat-PK proteins showed catalytic activity and are stable for 48 h. The intracellular concentration of PLP, which is known as a biologically active form of vitamin B6, was increased by pre-treatment of Tat-PK to the PC12 cells. Those results suggest that the transduction of Tat-PK fusion protein can be one of the ways to regulate the PLP level and to replenish this enzyme in the various neurological disorders related to vitamin B6.  相似文献   

5.
The cell line D29, which was easily and rapidly established by the promoter-activated production and glutamine synthetase hybrid system, secreted recombinant human interleukin-6 (hIL-6) at a productivity rate of 39.5 μg 10−6 cells day−1, one of the highest reported levels worldwide. The productivity rate was about 130-fold higher than that of the cell line A7, which was established without both promoter activation and gene amplification. Although D29 cells had a high copy number and high mRNA level of the hIL-6 gene as well as a high secretion rate of hIL-6, large amounts of intracellular hIL-6 protein accumulated in D29 cells compared to A7 cells. Northern blotting analysis showed no change in the GRP78/BiP expression level in D29 cells. In contrast, an electrophoresis mobility shift assay revealed strong activation of NF-κB in D29 cells. These results suggest that large amounts of hIL-6 translated from large amounts of hIL-6 mRNA cause excess accumulation of intact hIL-6 in the endoplasmic reticulum (ER), and that subsequent negative feedback signals via the ER overload response inhibit hIL-6 protein secretion. To enhance the hIL-6 productivity rate of D29 cells by releasing the negative feedback signals, the effect of pyrrolidinedithiocarbamate, an inhibitor of NF-κB activation, was examined. Suppression of NF-κB activation in D29 cells produced a 25% augmentation of the hIL-6 productivity rate. Therefore, in highly productive cells like D29 cells, the release of negative feedback signals could increase the total amount of recombinant protein secretion.  相似文献   

6.
Multiple sclerosis is characterized by perivascular CNS infiltration of myelin-specific CD4(+) T cells and activated mononuclear cells. TCR transgenic mice on the SJL background specific for proteolipid protein (PLP)(139-151) develop a high incidence of spontaneous experimental autoimmune encephalomyelitis (sEAE). We examined the intrinsic mechanisms regulating onset and severity of sEAE. CD4(+) T cells isolated from the cervical lymph nodes, but not spleens, of diseased 5B6 transgenic mice are hyperactivated when compared with age-matched healthy mice and produce both IFN-gamma and IL-17, indicating that the cervical lymph node is the initial peripheral activation site. The age-associated development of sEAE correlates with a decline in both the functional capacity of natural regulatory T cells (nTregs) and in PLP(139-151)-induced IL-10 production and a concomitant increase in IL-17 production. Anti-CD25-induced inactivation of nTregs increased the incidence and severity of sEAE. Conversely, induction of peripheral tolerance via the i.v. injection of PLP(139-151)-pulsed, ethylcarbodiimide-fixed APCs (PLP(139-151)-SP) inhibited the development of clinical disease concomitant with increased production of IL-10 and conversion of Foxp3(+) Tregs from CD4(+)CD25(-) progenitors. These data indicate that heterogeneous populations of Tregs regulate onset of sEAE, and that induction of peripheral tolerance can be exploited to prevent/treat spontaneous autoimmune disease.  相似文献   

7.
Abstract: Oligodendroglial cell death in the myelin proteolipid protein (PLP) mutants can be partially rescued by the environment factor(s) supplied by the wild-type cells in vivo and in vitro. It is possible that the presence of PLP or DM-20 results in secretion of a factor or factors in the CNS influencing oligodendrocyte development. We previously showed that DM-20 mRNA is produced in G26 mouse oligodendroglioma, B104 rat neuroblastoma, and B16 mouse melanoma but not in NIH3T3 mouse fibroblast cell lines. Culture supernatants from these cell lines were added to primary glial cell cultures from embryonic day 17 mouse brain. After 4 days, the number of oligodendrocytes present in cultures with supernatants from DM-20-producing cells (G26, B104, and B16) was significantly higher than that of control cultures but not with the NIH3T3 supernatant. To investigate more directly whether the PLP gene expression is involved in this process, NIH3T3 cells (nonneural cells) were forced to produce PLP or DM-20. By addition of the supernatants from the PLP/DM-20 transformants, the number of oligodendrocytes in the mixed glial cell cultures increased. This clearly demonstrates that the expression of the PLP gene is sufficient for and directly associated with secretion of a factor, which influences the oligodendrocyte development.  相似文献   

8.
The production of enterotoxins, lipase and total extracellular protein by four strains of Staphylococcus aureus grown in batch culture at a controlled pH of 6.5 in a completely defined medium was markedly reduced by glucose or glycerol constantly maintained at 0.I M. A concomitant increase in the production of deoxyribonuclease, up to 13-fold, showed however that not all extracellular proteins are under the same control mechanism. The presence of glucose and glycerol in the medium also resulted in a rapid increase in the specific growth rate. However, growth of S. aureus s6 in Mgilimited continuous culture showed that glucose repression of enterotoxin B when the growth rate was held constant was more than twice that in batch culture. Therefore glucose repression can occur independently of an increase in growth rate. The specific rate of production of enterotoxin B, lipase, deoxyribonuclease, beta-haemolysin and total extracellular protein by S. aureus s6 increased as the growth rate increased from 0.07 to 0.24 h-1. Non-replicating cells grown in the absence of glucose produced considerable amounts of enterotoxin, and production was not repressed by the presence of glucose in the resuspension medium. In contrast, no enterotoxin B or C was obtained from nonreplicating cells grown in the presence of glucose. Chloramphenicol completely inhibited enterotoxin production by non-replicating cells, indicating that synthesis of new protein was required.  相似文献   

9.
In this study, the role of exogenous fatty acids in the regulation of proteolipid protein (PLP) gene expression was investigated using the following model culture system: C6 glioma cells expressing the green-fluorescent protein (eGFP) driven by different segments of PLP promoter. Eicosapentanoic acid (EPA; 20:5 n-3), but not arachidonic acid (AA; 20:4 n-6), induced a significant increase in medium fluorescence intensity (MFI) determined by fluorescence-activated cell sorting (FACS). The induction of PLP promoter was time-dependent showing maximal activity between 24 and 48 h after EPA exposure. PLP promoter activation was dependent on fatty acid concentration, with maximum activation at 200 microM. Northern blot analysis confirmed the fluorescence data in C6 cells incubated with EPA. Furthermore, this treatment increased the adenylyl cyclase-cyclic AMP (cAMP) levels and the mitogen-activated protein kinase (MAPK) activation in C6 cells. PLP promoter activity was inhibited by pre-treatment with H89 (protein kinase A (PKA) inhibitor), but not with PD98059 (MAPK inhibitor), suggesting that EPA stimulates the expression of PLP via cAMP-mediated pathways.  相似文献   

10.
Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Yxp total), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7±0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3±0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (rp total, the sum of extracellular and intracellular lipase productivity) was found to be 1.60±0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h–1, compared with a total specific lipase productivity of 1.10±0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall.  相似文献   

11.
Conflicting results using erythrocyte aminotransferase (eAST) stimulation to assess vitamin B6 nutritional status in patients with less severe B6 deficiencies are common. It has been claimed that the presence of different B6 vitamers may modify the activation of eAST by pyridoxal-5'-phosphate (PLP) leading to stimulatory or even inhibitory effects. To investigate the possible role of this phenomenon in producing inconsistent AST stimulations, aliquots of whole blood were incubated with equivalent amounts of different B6 vitamers, and the AST stimulation was correlated with the concentrations of PLP, measured by high-performance liquid chromatography. At the end of the incubation period the erythrocytes and plasma were separately analyzed. The conversion of non-PLP B6 vitamers to PLP, by the erythrocytes, was similar (approximately 70%) for all B6 vitamers used in the incubation experiments. The newly formed PLP accumulated in the erythrocytes, but the percentage activation of AST did not change significantly from the basal levels, in spite of the presence of increased levels of PLP and other B6 vitamers used for incubation. When PLP was used in the incubation studies, all of it was retained by the plasma and was associated with a marked suppression of plasma AST stimulation. To determine the degree to which plasma and erythrocyte AST was dose-dependent, plasma and haemolysates were incubated with increasing concentrations of PLP. A very significant inverse relationship was obtained in plasma between AST stimulation and PLP even at modest PLP levels, while haemolysates required incubation with much higher PLP concentrations to demonstrate the same effect. Since plasma PLP is considered to be the most reliable indicator of B6 nutritional status in man, our findings suggest that plasma percentage AST stimulation more closely reflects the B6 nutritional status than erythrocyte AST stimulation test which may reflect B6 status only in severe, longstanding B6 deficiencies. Conflicting results using erythrocyte AST stimulations may be attributed to the insensitivity of red cell AST to changes in PLP content. It is unlikely that the presence of non-PLP B6 vitamers in haemolysate may affect the percentage stimulation of aminotransferase enzymes by PLP.  相似文献   

12.
A methanogenic population was immobilized onto agar gel, polyacrylamide gel, and collagen membrane. Agar-gel-entrapped methanogenic microorganisms gave the highest activity. The optimum agar concentration was between 1.5 and 3% (w/v), and the optimum microbial content was 20 mg wet cells/g gel. The optimum conditions for methane production by immobilized whole cells were pH 7.0–7.5 and 37–45°C. The rate of methane production was initially 1.8 μmol/g gel/hr. Methane productivity was gradually increased and reached a steady state (4.5μmol/g gel/hr) after 25 days of incubation. The immobilized methanogenic microbial population continuously evolved methane over a 90 day period. No difference in methane productivity was observed after three months of storage at 5°C. Methane was also produced by immobilized whole cells under aerobic conditions. Furthermore, carbohydrates, such as glucose, in wastewater completely decomposed by immobilized whole cells.  相似文献   

13.
Pyridoxal 5′-phosphate (pyridoxal phosphate, PLP) is an essential cofactor for multiple enzymatic reactions in industry. However, cofactor engineering based on PLP regeneration and related to the performance of enzymes in chemical production has rarely been discussed. First, we found that MG1655 strain was sensitive to nitrogen source and relied on different amino acids, thus the biomass was significantly reduced when PLP excess in the medium. Then, the six KEIO collection strains were applied to find out the prominent gene in deoxyxylulose-5-phosphate (DXP) pathway, where pdxB was superior in controlling cell growth. Therefore, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) targeted on pdxB in MG1655 was employed to establish a novel direct enzymatic evaluation platform (DEEP) as a high-throughput tool and obtained the optimal modules for incorporating of PLP to enhance the biomass and activity of PLP-dependent enzymes simultaneously. As a result, the biomass has increased by 55% using PlacI promoter driven pyridoxine 5′-phosphate oxidase (PdxH) with a trace amount of precursor. When the strains incorporated DEEP and lysine decarboxylase (CadA), the cadaverine productivity was increased 32% due to the higher expression of CadA. DEEP is not only feasible for high-throughput screening of the best chassis for PLP engineering but also practical in fine-tuning the quantity and quality of enzymes.  相似文献   

14.
Summary The productivity ofEscherichia coli biomass and recombinant beta-galactosidase was increased in Luria broth (LB) enriched with yeast extract. In flask culture under conditions of LB limitation, yeast extract suplementation gave the highest biomass (strain HB101/pRW756) stimulation per unit of component added compared with supplementation by various amounts of amino acids, vitamins, minerals, purines/pyrimidines, tryptone, casamino acids, casein peptone or gelatin peptone. The biomass production ofE. coli HB101/pRW756, XL-1 blue/puc118, XL-1 Blue FF/puc118 and TB-1/p1034 cells was stimulated in fermentor-scale experiments with additional yeast extract in LB. Total beta-galactosidase production from plasmid genes in fermentor-scale experiments was increased 105.4% in XL-1 blue/puc118 cells, 365.5% in XL-1 blue FF/puc118 cells and 421.4% in TB-1/p1034 cells by 0.5%, 1% and 1% weight per volume of additional yeast extract in LB, respectively. Depending on different strains, the increase of the enzyme production was obtained either by increased biomass, or the combination of enhanced gene expression and increased biomass. Neither the biomass nor beta-galactosidase production was stimulated in N4830/p1034 cells by the increase in yeast extract concentration in the medium.  相似文献   

15.
In order to rationally manipulate the cellular metabolism of Escherichia coli for D: -lactate production, single-gene and multiple-gene deletions with mutations in acetate kinase (ackA), phosphotransacetylase (pta), phosphoenolpyruvate synthase (pps), pyruvate formate lyase (pflB), FAD-binding D-lactate dehydrogenase (dld), pyruvate oxidase (poxB), alcohol dehydrogenase (adhE), and fumarate reductase (frdA) were tested for their effects in two-phase fermentations (aerobic growth and oxygen-limited production). Lactate yield and productivity could be improved by single-gene deletions of ackA, pta, pflB, dld, poxB, and frdA in the wild type E. coli strain but were unfavorably affected by deletions of pps and adhE. However, fermentation experiments with multiple-gene mutant strains showed that deletion of pps in addition to ackA-pta deletions had no effect on lactate production, whereas the additional deletion of adhE in E. coli B0013-050 (ackA-pta pps pflB dld poxB) increased lactate yield. Deletion of all eight genes in E. coli B0013 to produce B0013-070 (ackA-pta pps pflB dld poxB adhE frdA) increased lactate yield and productivity by twofold and reduced yields of acetate, succinate, formate, and ethanol by 95, 89, 100, and 93%, respectively. When tested in a bioreactor, E. coli B0013-070 produced 125 g/l D-lactate with an increased oxygen-limited lactate productivity of 0.61 g/g h (2.1-fold greater than E. coli B0013). These kinetic properties of D-lactate production are among the highest reported and the results have revealed which genetic manipulations improved D-lactate production by E. coli.  相似文献   

16.
An efficient fermentation-strengthening approach was developed to improve the anaerobic production of propionic acid and vitamin B12 by co-fermentation with Propionibacterium freudenreichii. Vitamin B12 production from glucose resulted in relatively high productivity (0.35 mg/L h) but a low propionic acid yield (0.55 g/g). By contrast, glycerol gave a high propionic acid yield (0.63 g/g) but low productivity (0.16 g/L h). Co-fermentation of glycerol and glucose with a gradual addition strategy gave high yields (propionic acid: 0.71 g/g; vitamin B12: 0.72 mg/g) and productivities (propionic acid: 0.36 g/L h; vitamin B12: 0.36 mg/L h). Finally, the integrated feedstock and fermentation system strengthening strategy was demonstrated as an efficient method for the economic production of bio-based propionic acid and vitamin B12.  相似文献   

17.
A packed-bed reactor (PBR) system using immobilized lipase PS as biocatalyst was developed for continuous monoacylglycerols (MAG) production. The condition for continuous MAG production using immobilized lipase PS (IM-PS) of 1.5 g (550 U) in PBR (0.68 cm i.d., 25 cm long) was optimized. The effect of molar ratio of glycerol to palm olein, water content in glycerol and residence time on MAG production was investigated. The optimal glycerol to palm olein molar ratio and water content in glycerol were 12:1 and 10% (w/w), respectively. The yield of MAG increased with increasing residence time. At a residence time of 7.5 h gave the highest yield of MAG of 60%. The long-term operation gave the highest yield of MAG 61.5% at 24 h of the operation time with the productivity of 1.61 g MAG/day. A half-life of the long-term process was 35 days of the operation time with the productivity of 0.81 g MAG/day. Furthermore, the large scale of MAG production was performed continuously with IM-PS of 15 g (5500 U) in PBR (1.5 cm i.d., 50 cm long). The highest yield of MAG in large-scale operation of 70.1% and the 11-fold increasing in productivity of 18.3 g MAG/day were obtained at 24 h of the operation time.  相似文献   

18.
Female B10.S mice are highly resistant to proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) and depletion of PLP 139-151-reactive CD4+CD25+ regulatory T (Treg) cells can slightly increase their EAE susceptibility. Although male B10.S mice are moderately susceptible to EAE, we report that depletion of Treg cells in male B10.S mice before immunization with PLP 139-151 renders them highly susceptible to severe EAE with more CNS neutrophil infiltrates than nondepleted controls. Increased susceptibility is associated with an enhanced PLP 139-151-specific T cell response and greater production of IFN-gamma, IL-6, and IL-17. Male CD4+CD25- effector cells depleted of Treg cells proliferate to a greater degree than those from females in response to either anti-CD3 or PLP 139-151. These data suggest that because of their capacity to regulate potent autoaggressive effector cells, Treg cells partly contribute to the resistance to autoimmunity in the male mice.  相似文献   

19.
Recombinant adenoviruses became one of the vectors of choice for delivery and expression of foreign proteins for gene therapy and vaccination purposes. Nevertheless, the production of adenovirus is currently limited by the so-called "cell density effect", i.e., a drop in cell specific productivity concomitant with increased cell concentration at infection (CCI). This work describes the characterisation and optimisation of the infection process in order to improve recombinant adenovirus type 5 yields at high cell densities. For that purpose, 293 cells adapted to suspension were grown in 2l bioreactors and infected at different cell concentrations, using different re-feed strategies, while evaluating cell metabolism. The consumption of amino acids is enhanced during infection, although no amino acid limitation was detected for cells infected at concentrations in the range of 2 x 10(6)cell/ml, for which the highest volumetric productivity was obtained in batch mode. Conversely, infecting at cell concentrations in the range of 3 x10(6)cell/ml led to complete depletion of glucose, glutamine and threonine before the optimal harvesting time, a significant decrease in volumetric productivity being observed; the effect of amino acids and glucose addition at infection time on cell specific and volumetric productivity of adenovirus was assessed, no improvement on adenovirus production being achieved. The effect of ammonia, present in high concentrations at 3 x10(6)cell/ml, was evaluated and seem to be detrimental; an 1.8-fold increase on adenovirus volumetric productivity was obtained for infections performed at 3 x10(6)cell/ml when non-ammoniagenic medium was used.  相似文献   

20.
A key goal in process development for antibodies is to increase productivity while maintaining or improving product quality. During process development of an antibody, titers were increased from 4 to 10 g/L while simultaneously decreasing aggregates. Process development involved optimization of media and feed formulations, feed strategy, and process parameters including pH and temperature. To better understand how CHO cells respond to process changes, the changes were implemented in a stepwise manner. The first change was an optimization of the feed formulation, the second was an optimization of the medium, and the third was an optimization of process parameters. Multiple process outputs were evaluated including cell growth, osmolality, lactate production, ammonium concentration, antibody production, and aggregate levels. Additionally, detailed assessment of oxygen uptake, nutrient and amino acid consumption, extracellular and intracellular redox environment, oxidative stress, activation of the unfolded protein response (UPR) pathway, protein disulfide isomerase (PDI) expression, and heavy and light chain mRNA expression provided an in‐depth understanding of the cellular response to process changes. The results demonstrate that mRNA expression and UPR activation were unaffected by process changes, and that increased PDI expression and optimized nutrient supplementation are required for higher productivity processes. Furthermore, our findings demonstrate the role of extra‐ and intracellular redox environment on productivity and antibody aggregation. Processes using the optimized medium, with increased concentrations of redox modifying agents, had the highest overall specific productivity, reduced aggregate levels, and helped cells better withstand the high levels of oxidative stress associated with increased productivity. Specific productivities of different processes positively correlated to average intracellular values of total glutathione. Additionally, processes with the optimized media maintained an oxidizing intracellular environment, important for correct disulfide bond pairing, which likely contributed to reduced aggregate formation. These findings shed important understanding into how cells respond to process changes and can be useful to guide future development efforts to enhance productivity and improve product quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号