首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological parameters of microcuttings, namely leaf area, weight (wt) and position on the stock shoot, had significant effects on root vigour, microshoot growth and incidence of shoot tip necrosis (STN) in cultures of grape (Vitis vinifera L.) ‘Arka Neelamani’. Single-node leafy cuttings cultured in MS medium containing 1 μM IAA and 0.1 μM GA3 generally rooted first and subsequently sprouted into a single shoot. Small leafed cuttings exhibited slow root emergence, poor quality roots, early sprouting and weak shoot growth. Large leafed cuttings on the other hand, showed early rooting, vigorous roots, delayed sprouting and healthier shoots. Significant correlations were observed between fresh root wt per plantlet at 1 month in culture and wt of lamina, total wt and leaf area of the cuttings in that order. A significant correlation also existed between wt of roots and height or wt of the sprout that developed. The study suggests that the weight or area of the leaf governed the root growth in a microcutting. STN was observed in some plantlets particularly those derived from large leafed cuttings. Such cuttings showed vigorous roots and delayed but fast sprout growth that ended in STN. Plantlets showing STN had less Ca++ and Mg++ in the shoot tissue than in the shoots of normal plantlets while the roots showed similar Ca++ or higher Mg++ contents. Both had comparable amounts of cytokinins in shoot and root tissues. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Wheat (Triticum aestivum L. cv. ‘Zyta’) seedlings were treated with 10, 100 and 200 μM Ni. Tissue Ni accumulation, length, relative water content (RWC), proline and H2O2 concentrations as well as the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD) and glutathione S-transferase (GST) were studied in the shoots and roots after 6 days of Ni exposure. Treatment with Ni, except for its lowest concentration, resulted in a significant reduction in wheat growth. In comparison to the shoots, the roots showed greater inhibition of elongation, which corresponded with higher accumulation of Ni in these organs. Both shoots and roots responded to Ni application with a decrease in RWC and enhancement in proline concentration. Greater dehydration of the shoot tissue was accompanied by more intense accumulation of proline. Treatment of the wheat seedlings with the highest concentration of Ni led to about 60% increase in H2O2 concentration in both studied organs. Apart from CAT, constitutive activities of antioxidative enzymes were much higher in the roots than in the shoots. Exposure of the seedlings to Ni resulted in SOD activity decline, which was more marked in the roots. While the shoots showed a substantial decrease (up to 30%) in CAT activity, in the roots the activity of this enzyme remained unchanged. After Ni application APX, POD and GST activities increased several-fold in the shoots, whereas in the roots they were not significantly altered. The results suggest that differential antioxidative responses of the shoots and roots of wheat seedlings to Ni stress might be related to diverse constitutive levels of antioxidant enzyme activities in both organs.  相似文献   

3.
Thein vitro activity of glutamate dehydrogenase (NADH-GDH), from dark-treated root segments of maize seedlings responded differently to amino acids threonine, glutamate and methionine than that from light-treated root segments, and to the amino acid methionine in dark- and light-treated shoot segments. In most cases amino acids inhibited GDH activity, the inhibition increased with amino acid concentration. However, methionine activated GDH from dark-treated roots and light-treated shoots, while aspartate had little effect on enzyme activity.  相似文献   

4.
Summary Well-developed somatic embryos were selected from a repetivively somatic embryo line derived from embryonic axes of immature zygotic embryos of English walnut ‘No. 120’ (Juglans regia L.) for germination and conversion studies. In germinating dishes, somatic embryos germinated into only shoots, only roots, or both shoots and roots. Without any pretreatment, 28% somatic embryos germinated, while those treated with 2.5–5.0 mg 1−1 (7.2–14.4 μmol) gibberellic acid (GA3) germinated at 25–28% and those receiving a cold treatment of 2–3 mo. at 3–4°C germinated at 30–43%. However, only 4–19% of the germinating embryos showed both shoots and roots. Treated with desiccation, either with CaCl2·6H2O or Ca(NO3)2·4H2O at 20°C in the dark for 3 d, somatic embryos germinated at 85–91%, 57–69% of which had both shoots and roots. Treatment with 2 mo. cold storage in combination with desiccation using Ca(NO3)2·4H2O resulted in 92% of somatic embryos germinating, 70% of which showed both shoots and roots. No significant differences were observed between solid and liquid germination media. After transferring the germinating embryos to plantlet development media, 52–63% of those with both shoots and roots developed into plantlets while 11% with only shoots or 9% with only roots converted into plantlets. Plantlet development was improved by using lower medium salts and sucrose concentrations. The addition of activated charcoal enhanced root development, particularly root branching. Of 131 plants transplanted, 91 plants were acclimatized to a greenhouse.  相似文献   

5.
This study reports a protocol for successful micropropagation of Penthorum chinense using nodal explants on Murashige and Skoog (MS) medium supplemented with 6-benzyladenine (BA) or kinetin (Kn). The presence of BA promoted a higher rate of shoot multiplication than Kn. Maximum multiple shoot formation was observed in 59.2% of nodal explants cultured on MS medium supplemented with 2.0 mg l−1 BA after 6 wk. After subculture for 4 wk, the maximum number of shoots (6.4) was obtained on a medium with 2.0 mg l−1 BA, but shoots were too short and not suitable for micropropagation. The taller shoots that regenerated in the presence of lower BA concentration (1.0 mg l−1) were selected for root induction study. Most shoots (98.8%) rooted in the presence of 0.5 mg l−1 indole-3-acetic acid after 3 wk, with each shoot forming an average of 10.0 roots. Plantlets were transferred to soil and successfully acclimatized.  相似文献   

6.
Rice seedlings were grown in hydroponic culture to determine the effects of external Zn and P supply on plant uptake of Cd in the presence or absence of iron plaque on the root surfaces. Iron plaque was induced by supplying 50 mg l−1 Fe2+ in the nutrient solution for 2 day. Then 43-day-old seedlings were exposed to 10 μmol l−1 Cd together with 10 μmol l−1 Zn or without Zn (Zn–Cd experiment), or to 10 μmol l−1 Cd with 1.0 mmol l−1 P or without P (P–Cd experiment) for another 2 day. The seedlings were then harvested and the concentrations of Fe, Zn, P and Cd in dithionite–citrate–bicarbonate (DCB) extracts and in roots and shoots were determined. The dry weights of roots and shoots of seedlings treated with 50 mg l−1 Fe were significantly lower than when no Fe was supplied. Adsorption of Cd, Zn and P on the iron plaque increased when Fe was supplied but Cd concentrations in DCB extracts were unaffected by external Zn or P supply levels. Cd concentrations in shoots and roots were lower when Fe was supplied. Zn additions decreased Cd concentrations in roots but increased Cd concentrations in shoots, whereas P additions significantly increased shoot and root Cd concentrations and this effect diminished when Fe was supplied. The percentage of Cd in DCB extracts was significantly lower than in roots or shoots, accounting for up to 1.8–3.8% of the plant total Cd, while root and shoot Cd were within the ranges 57–76% and 21–40% respectively in the two experiments. Thus, the main barrier to Cd uptake seemed to be the root tissue and the contribution of iron plaque on root surfaces to plant Cd uptake was minor. The changes in plant Cd uptake were not due to Zn or P additions altering Cd adsorption on iron plaque, but more likely because Zn or P interfered with Cd uptake by the roots and translocation to the shoots.  相似文献   

7.
During seedling growth of mungbean in dark, depletion of cotyledonary starch is reflected by an increase in starch content of root and shoot. With progress of seedling growth, amylolytic activity increases in all organs i.e. cotyledons, shoots and roots. A rapid turnover of starch in shoots and roots has been proposed. Amylase activity of seedlings was in the order of cotyledons>shoots>roots. Five days after germination (DAG) α-amylase from cotyledons of mungbean seedlings was purified using ammonium sulphate precipitation, DEAE cellulose and sephadex G-150 column chromatography. Phytic acid was a stronger inhibitor of α-amylase than EDTA. Phytic acid, Hg2+, Zn2+ and Mn2+ were non-competitive inhibitors and the corresponding Ki values were 5.0–5.7, 0.36–0.38, 2.6–3.8 and 0.7–0.8 mol·M−3. Elution patterns of α-amylases of cotyledons, shoots and roots on sephadex G-100 column showed that cotyledonary α-amylase had a higher molecular mass than that of shoot and root α-amylases which had identical molecular masses. All α-amylases showed the same optimum pH 5.0 whereas optimum temperature was 55 °C for cotyledonary and 45 °C for shoot and root α-amylases. In all these tissues α-amylases were stable to 30 min heat treatment at 50 °C however unlike cereal α-amylases they lost activity at 70 °C. Km for α-amylases from cotyledons, shoots and roots with starch was 1.9, 4.3 and 6.6 mg per cm3, respectively. α-amylase of cotyledons and roots showed activity in reactions with various substrates in the order of starch>amylose>dextrin-I=dextrin-IV>α-cyclodextrin=β-cyclodextrin>amylopectin>pullulan. The shoot α-amylase showed high activity with amylopectin, which was comparable with that obtained with amylose, and the activity with α and β-cyclodextrin was higher in comparison with dextrin-I and IV. The α-amylases from these tissues liberated maltose, maltotriose and higher oligosaccharides from starch. It could be concluded that amylases from different organs of a seedling could have different physical and kinetic properties.  相似文献   

8.
Phytostabilization strategies may be suitable to reduce the dispersion of uranium (U) and the overall environmental risks of U-contaminated soils. The role of Glomus intraradices, an arbuscular mycorrhizal (AM) fungus, in such phytostabilization of U was investigated with a compartmented plant cultivation system facilitating the specific measurement of U uptake by roots, AM roots and extraradical hyphae of AM fungi and the measurement of U partitioning between root and shoot. A soil-filled plastic pot constituted the main root compartment (CA) which contained a plastic vial filled with U-contaminated soil amended with 0, 50 or 200 mg KH2PO4−P kg–1soil (CB). The vial was sealed by coarse or fine nylon mesh, permitting the penetration of both roots and hyphae or of just hyphae. Medicago truncatula plants grown in CA were inoculated with G. intraradices or remained uninoculated. Dry weight of shoots and roots in CA was significantly increased by G. intraradices, but was unaffected by mesh size or by P application in CB. The P amendments decreased root colonization in CB, and increased P content and dry weight of those roots. Glomus intraradices increased root U concentration and content in CA, but decreased shoot U concentrations. Root U concentrations and contents were significantly higher when only hyphae could access U inside CB than when roots could also directly access this U pool. The proportion of plant U content partitioned to shoots was decreased by root exclusion from CB and by mycorrhizas (M) in the order: no M, roots in CB > no M, no roots in CB > M, roots in CB > M, no roots in CB. Such mycorrhiza-induced retention of U in plant roots may contribute to the phytostabilization of U contaminated environments.  相似文献   

9.
The growth and water relations of Paulownia fortunei in photoautotrophic cultures (nutrient medium lacking sucrose and growth regulator) with CO2 enrichment (PWAH) or without CO2 enrichment (PWAL) were compared with those in photomixotrophic shoot (PWC; 30 g dm−3 sucrose and 0.3 mg dm−3 N6-benzyladenine) and root cultures (PWR; 0.3 mg dm−3 indole-3-butyric acid). The photoautotrophic and photomixotrophic cultures were incubated under photosynthetic photon flux 125 and 60 μmol m−2 s−1, respectively. 100 % sprouting and significantly higher number of shoots (1.6) were obtained with PWAH as compared to PWAL and PWC. PWAH and PWAL stimulated spontaneous rooting from the cut end of axillary shoots. In PWAH, 84 % of shoots rooted with an average of 5.9 roots per shoot and 4.0 cm of root length in 21 d. Rooting of photomixotrophic shoot cultures were stimulated by an auxin treatment. In this case, 98.3 % of shoots were rooted with an average of 4.6 roots per shoot and 1.9 cm length. A microscopic observation on leaf abaxial surface prints from photomixotrophic shoot and root cultures showed widely open (6 – 8 μm) spherical stomata (12 – 14 μm) and from photoautotrophic cultures elliptical stomata (10 – 12 μm) with narrow openings (3 – 4 μm). Leaves from photomixo-trophic cultures had higher stomatal index as compared to photoautotrophic cultures. The rate of moisture loss from detached leaves was not varying significantly in different cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The present study was conducted to test the effects of KNO3, KH2PO4, and CaCl2 on shoot multiplication, root proliferation, and accumulation of phytochemicals in in vitro cultures of Oroxylum indicum. The results indicate that modifying the MS salt formulation in relation to particular inorganic nutrients highly affected shoot multiplication, root proliferation, and accumulation of flavonoids in in vitro cultures. A concentration of 0.60 g L?1 CaCl2 resulted in the highest frequency of shoot regeneration (5.6 shoots per explant). A concentration of 0.40 g L?1 CaCl2 resulted in the highest frequency of root regeneration (7.8 roots per shoot). Modifications of the concentrations of inorganic salts were also found to be advantageous for production media for both multiple shoots and shoot-derived root in vitro cultures. Multiple shoots generated on shoot induction medium with a concentration of 0.60 g L?1 CaCl2 and roots generated on root induction medium with a concentration of 1.5 g L?1 KNO3 yielded about a five times higher flavonoid level than cultures generated on control medium respectively.  相似文献   

11.
Plantlet regeneration through shoot formation from young leaf explant-derived callus of Camptotheca acuminata is described. Calli were obtained by placing leaf explants on Woody plant medium (WPM) supplemented with various concentrations of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). Callus induction was observed in all media evaluated. On the shoot induction medium, the callus induced on the WPM medium containing 19.8 μM BA and 5.8 μM NAA was the most effective, providing high shoot regeneration frequency (70.3 %) as well as the highest number of shoots (11.2 shoots explant−1). The good rooting percentage and root quality (98 %, 5.9 roots shoot−1) were achieved on WPM medium supplemented with 9.6 μM indole-3-butyric acid (IBA). 96 % of the in vitro rooted plantlets with well developed shoots and roots survived transfer to soil.  相似文献   

12.
Cypripedium flavum, known as the rare lady’s slipper orchid, is one of the endemics with a yellow flower in China. Due to its conservation and commercial requirement, establishment of an efficient method for micropropogation is urgently needed. Multiple shoots were obtained by placing seedlings from seeds of C. flavum on Harvais media supplemented with two cytokinins (BAP or KIN) used alone or in addition to different concentration of potato homogenate. The effect of BAP was better than that of KIN on shoot multiplication. The Havais media supplemented with BAP (2.22 μM) and potato homogenate (20 g l−1) was the most effective, providing high shoot multiplication frequencies (95%) associated with a high number of shoots per explant (2.55 shoots/plant). For root formation, high rooting and survival were achieved using 1/2 Harvais media supplemented with 0.6 g l−1activated charcoals. High-level activated charcoal increased the number and the length of roots because the activated charcoal could absorb BAP in the media. This study demonstrated that C. flavum could be micropropagated by using multiple shoots of seedlings derived from mature seeds.  相似文献   

13.
Summary A protocol is described for rapid multiplication of Piper barberi Gamble (Piperaceae) through shoot tip and nodal explant cultures. Nodal explants with a single axillary meristem showed three times better response with respect to shoot proliferation when compared to shoot tip explants. The best shoot proliferation response of nodal explants was observed with a cytokinin combination of N6-benzyladenine (4.43 μM) and kinetin (2.32 μM), with 88% bud break. The number of shoot initials (2.4) produced per nodal explant was twice the number of shoot initials (1.2) per shoot tip. An average of 6.9±0.58 adventitious shoots were observed from the proximal end of the internodal explants on Mursashige and Skoog (1962) (Ms) basal medium supplemented with N6-benzyladenine (2.22 μM) and kinetin (0.46 μM). A multiplication rate of 82 shoots per explant could be achieved after 9 wk of subculturing. The in vitro shoots were rooted on one-half and one-quarter MS basal medium. The shoots rooted on one-quarter MS in the dark produced eight roots with an average root length of 3.36 cm and 98% survival. These plants were transferred to the field with a survival rate of 75%.  相似文献   

14.
The present study was undertaken to examine the influence of toxic levels of Ni and Al, on the activities of key nitrogen assimilatory enzymes in roots and shoots of growing rice seedlings. When seedlings of two inbred rice (Oryza sativa L.) cvs. Malviya-36 and Pant-12, sensitive to both Ni and Al, were raised in sand cultures containing 200 and 400 μM NiSO4 or 80 and 160 μM Al2(SO4)3, a marked inhibition in the activities of NO3 assimilatory enzymes NR and GS was observed in roots as well as shoots during a 5–20 day growth period. Both Ni and Al treatments, in growth medium, stimulated the activity of aminating glutamate dehydrogenase (NADH-GDH) whereas the activity of deaminating GDH (NAD+-GDH) decreased under metal toxicities. The activities of the aminotransferases studied; alanine aminotransferase (AlaAT) and aspartate amino transferase (AspAT) increased due to Ni and Al treatments. Results suggest that both Ni and Al treatments impair N assimilation in rice seedlings by inhibiting the activities of NR and GS and that GDH appears to play a role in assimilation of NH4 + in metal stress conditions. Further, higher activity of aminotransferases in metal stressed seedlings might be helpful in meeting higher demand of amino acids under stressed conditions.  相似文献   

15.
By identifying antibiotics that had the least phytotoxic effects on explants during genetic transformation, we evaluated the effect of various antibiotics on callus induction and morphogenesis from leaf explants and in vitro growth of Fragaria × ananassa Duch. cv. Toyonaka. Results showed that kanamycin (Kan) significantly inhibited callus induction, bud differentiation and root morphogenesis while carbenicillin (Carb), cefotaxime (Cef) and an equal concentration of Cef and Carb up to 500 mg L−1 had no significant effects on callus induction and shoot growth. Kan, even at 2.5 mg L−1, significantly inhibited callus induction, shoot regeneration and root formation, while no shoots regenerated at concentrations above 15 mg L−1. Rooting was completely inhibited in the presence of 50 mg L−1 Kan. Cef had negative effects on shoot regeneration from leaf explants and in vitro growth of strawberry. Compared to Cef, Carb at ≤300 mg L−1 significantly promoted shoot and root organogenesis. However, an equal concentration of Carb plus Cef could alleviate the negative effect of Cef on strawberry. Results from relative electrolyte leakage, root and antioxidant activities, O2·− production rate, H2O2, proline and MDA contents showed that Kan, Cef and Carb caused electrolyte leakage and triggered active enzymatic processes and metabolism. This offers a possible mechanism for the inhibition or stimulation of strawberry growth caused by these antibiotics.  相似文献   

16.
Obrist  Daniel  Yakir  Dan  Arnone III  John A. 《Plant and Soil》2004,267(1-2):1-12
Infection of tall fescue (Festuca arundinacea Schreb.) with its endemicNeotyphodium coenophialum-endophyte (Morgan-Jones and Gams) Glenn, Bacon and Hanlin appears to reduce copper (Cu) concentrations in forage and serum of grazing animals, contributing to a range of immune-related disorders. A greenhouse experiment was conducted to identify effects of novel endophyte strains on Cu acquisition by tall fescue (Festuca arundinacea Schreb.) varieties Grasslands Flecha and Jesup infected with a novel, non ergot producing endophyte strain AR542, and two perennial ryegrass (Lolium perenne L.) varieties Aries and Quartet infected with a novel, non lolitrem B producing strain AR1, and their noninfected (E−) forms. Individual endophyte/grass associations were cultivated in nutrient solutions at 1.0 (P+) and 0.0 mM (P−) phosphorus concentrations. The Cu2+-binding activity of extracellular root exudates, and concentrations of Cu and other heavy metals in roots and shoots were measured. Extracellular root exudates of AR542-infected vs. E− tall fescue had higher Cu2+-binding activity only in P− nutrient solution as shown by lower concentration of free Cu2+ (0.096 vs. 0.188 mmol Cu2+ g−1 root DM, respectively). The Cu2+-binding activity by root exudates of perennial ryegrass was not affected by endophyte infection, but was higher (i.e., lower concentration of free Cu2+) in P− vs. P+ nutrient solution (0.068 vs. 0.114 mmol Cu2+ g−1 root DM). In this hydroponic experiment, Cu concentrations in shoots of both grasses were not a function of Cu2+-binding activity and endophyte effects on heavy metal concentrations in shoots and roots were specific for each variety. The Cu2+-binding activity of extracellular root exudates may affect Cu accumulation by field-grown, endophyte-infected tall fescue under P-limiting growth conditions and warrants verification by more specific methods.  相似文献   

17.
Summary Several rose species (Rosa rugosa, R. wichuraiana, R. setigera, R. laevigata, R. banksiae, R. roxburghii, R. odorata) and interspecific hybrids were cultured to determine the appropriate concentrations of nutrients and growth regulators for shoot proliferation and root initiation. Cultured shoot tips and lateral buds from different genotypes proliferated multiple shoots on a basal medium [Murashige and Skoog (MS) salts, vitamins, glycine, sucrose, and agar] supplemented with 0 μM to 17.8 μM (4 mg·l−1) 6-benzyladenine (BA) and 0 μM to 0.54 μM (0.1 mg·l−1) naphthalene, acetic acid (NAA). The ability of the explants to proliferate shoots and initiate roots was affected by the genotype, the nodal position of the explant, the strength of the MS basal salts, and the growth regulators used. The buds nearest the apex exhibited the slowest rate of development. Most species had the highest shoot proliferation when cultured on basal MS medium supplemented with 8.9 μM (2 mg·l−1) BA, but the degree varied by species. Root development was enhanced by lowering the concentration of MS salts. With difficult-to-root species, rooting was improved by supplementing the media with 11.4 μM (2 mg·l−1) indole-3-acetic acid (IAA) or by giving them a 7-d dark treatment at 10°C.  相似文献   

18.
Aluminum effects on the morphological development of soybean (Glycine max (L.) Merr.) were characterized in greenhouse and growth chamber experiments. An Al-sensitive cultivar, ‘Ransom’, was grown in an acid soil (Aeric Paleudult) adjusted to 3 levels of exchangeable Al. Lateral shoot development at the nodes of the main stem was extensive in the limed soil containing 0.06 cmol(+) Alkg−1. However, lateral shoot length and weight were severely inhibited in the unlimed soil containing 2.19 cmol(+) Alkg−1, and in the unlimed soil amended to 2.63 cmol(+) Alkg−1 with AlCl3. This inhibition by the high Al/low pH condition was reversed by the exogenous application of a synthetic cytokinin 6-benzylaminopurine (BA). The daily application of 20 μg mL−1 BA applied locally to the lateral meristems of plants grown in the unlimed soil stimulated lateral shoot growth substantially, such that it was either comparable to or greater than that observed in the limed treatment without BA. Accumulation of K, Ca, and Mg in lateral shoot branches was also stimulated by the local application of BA. The inhibitory effects of Al on lateral shoot development were confirmed in solution culture. In addition, differential sensitivity to Al was evident among the primary root, first order lateral roots, and second order lateral roots. The length of the primary root was only slightly decreased by increasing concentrations of Al up to 30 μM. In contrast, the length of basipetally located first order lateral roots was restricted to greater extent; up to 50% by 30 μM Al. Second order lateral lengths were inhibited even more severely; up to 86% by 30 μM Al. Substantial evidence in the literature indicates that the root apex is a major site for the biosynthesis of cytokinin that is supplied to shoots, and cellular function and development in this region of the root are impaired during Al toxic conditions. This suggests that one mode of action by which Al may affect shoot growth is by inhibiting the synthesis and subsequent translocation of cytokinin to the meristematic regions of the shoot. The present observation of a reversal of Al-inhibited lateral shoot development by exogenously applied cytokinin supports this hypothesis. However, the inability of applied cytokinin to counter the restriction imposed by Al on total shoot dry matter production implies the impairment by Al toxicity of other root functions, such as ion and water transport, also played an important role in altering shoot morphology.  相似文献   

19.
Efficacy of phloroglucinol in promoting growth and development of in vitro-derived shoot tips was studied in six potato (Solanum tuberosum L.) genotypes. Different concentrations of phloroglucinol (0, 0.08, 0.4, 0.8, 1.2 and 1.6 mM) were tested in combination with either 0.1 or 0.2 M sucrose in shoot tip proliferation medium based on MS (Murashige and Skoog, 1962) medium supplemented with 5.8 μM GA3 (gibberellic acid), 1.1 μM BA (N6-benzyladenine) and 8.39 μM D-calcium pantothenate. Phloroglucinol fostered multiple shoot formation, promoted axillary shoot proliferation in terms of shoot tip fresh weight and shoot length, and stimulated root formation on the shoot tips. There was significant phloroglucinol × sucrose interaction for number of shoots developed per shoot tip, shoot tip fresh weight and number of roots induced per shoot tip. The beneficial effect of phloroglucinol on shoot tip survival was conspicuous only in genotypes that showed poor survival in the control proliferation medium. There were significant differences in response between the two sucrose levels with regard to shoot tip fresh weight and number of roots per shoot tip. Phloroglucinol in combination with 0.2 M sucrose induced maximum number of roots per shoot tip. Optimum shoot tip growth was fostered in medium containing 0.8 mM phloroglucinol and 0.2 M sucrose. High frequency multiple shoot formation in this medium ensures a faster rate of potato shoot tip multiplication within a limited time and space. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
This study examined whether ‘Risnod2’ and ‘Risnod27’ non-nodulating mutants of pea (Pisum sativum L.) provided with increasing concentrations of nitrate could achieve a growth and nitrogen accumulation comparable to their parental N2-fixing cv. Finale. In the cv. Finale, nodule number, nodule dry mass accumulation, total C2H2-reducing activity of nodulated roots (TAR) and estimated N2 fixation were considerably inhibited at 5.0 and 10.0 mM root medium NO3 concentrations. In contrast a 0.63 mM level stimulated both the nodule dry mass and TAR. The cv. Finale N2-fixing plants grown on 0 to 2.5 mM NO3 levels had higher shoot N concentrations than the Nod mutants, but within the 5.0 to 10.0 mM levels the Nod mutants approached or even overtopped the N concentration of the cv. Finale plants. Compared with a high positive correlation found in the Nod mutants, shoot N concentration in the cv. Finale was negatively correlated with the root medium NO3 concentration. The pattern of nitrogen content in shoot dry mass was very similar to that seen in the shoot dry mass accumulation. The Nod mutants grown on the 5.0 and/or 10.0 mM NO3 level had plant dry mass, shoot nitrogen concentration, shoot nitrogen content, and root/shoot dry mass ratio comparable with those of the nodulating cv. Finale grown on the same nitrate levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号