首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Vascular endothelial growth factor (VEGF) and its specific receptors, FLt1/fms, Flk1/KDR and FLt4, play important roles in vasculogenesis, and physiological and pathological angiogenesis. Whether angiogenic growth factors are involved in regulating angiogenic processes during the postpartum involution period (PP) of the rat uterus is unknown. We used immunohistochemistry to analyze the expression levels of VEGF, the fms-like tyrosine kinase 1 (FLt1/fms), the kinase insert domain-containing region 1 (Flk1/KDR), Fms-related tyrosine kinase 4 (FLt4) and vascular endothelial growth inhibitor (VEGI) in the rat uterus during the days 1, 3, 5, 10 and 15 of the PP to determine the temporal and spatial expressions of VEGF and its receptors during the PP. Throughout the PP, cytoplasmic and membrane staining of VEGI, VEGF and their receptors were observed in the lumens, crypts and glandular epithelial cells as well as in connective tissue and vascular endothelial and smooth muscle cells in the endometrium. We found that the intensity of the immunoreactions in the endometrium varied with the morphological changes that occurred during involution. Immunoreactions for VEGI, VEGF and their receptor, Flk1/KDR, in the luminal epithelial cells were stronger than those in the glandular epithelial and stromal cells, particularly during PP 1, 3 and 5, which suggests that these peptides may contribute to re-epithelialization of the endometrium. On the other hand, Flt1/fms immunoreactivity was strong mainly in the stromal cells during the PP. The presence of VEGF and its receptors (FLt1/fms, Flk1/KDR, FLt4) in the stromal cells and blood vessels during the PP suggests that they may contribute to regulating stromal repair and angiogenesis in the involuting uterus of the rat.  相似文献   

2.
To study possible role and regulation of apoptosis occurred in primate endometrium, the expression of apoptosis-related molecules, Fas, FasL, B cell lymphoma/leukaemia-2 (Bcl-2), and Bax were analyzed in relation to occurrence of apoptosis and proliferation in the cycling endometrium of the rhesus monkey using immunohistochemistry and Western blot. The cell apoptosis and proliferation were evaluated by means of in situ 3'-end labeling and Ki67 immunostaining, respectively. The results showed that the expressions of Fas, Fas ligand (FasL), Bcl-2, and Bax were co-localized predominantly in the epithelial cells of the endometrium. Modest Fas staining with no obvious change was detected throughout the menstrual cycle, while the levels of FasL and Bax protein in the epithelial cells increased in the secretory phase when apoptosis was most prevalent. In contrast, epithelial immunostaining for Bcl-2 was maximal during the proliferative phase and decreased in the secretory phase. Bcl-2 immunoreactivity was also detected in some immunocytes. The coordinated expression of Fas, FasL, Bcl-2, and Bax in the cycling endometrium of the rhesus monkey suggests that the cyclic changes in endometrial growth and regression may be regulated by the balance of these factors under the action of ovary steroids.  相似文献   

3.
4.
The objective of this study was to investigate the protein and mRNA expression of vascular endothelial growth factor (VEGF), VEGFR-1 (fms-like tyrosine kinase, Flt-1) and VEGFR-2 (fetal liver kinase-1/kinase insert domain-containing receptor, Flk-1/KDR) in the endometrium during the estrous cycle and early pregnancy in pigs. The VEGF-receptor system was localized in epithelial and stromal cells, blood vessels, and myometrium. Western blot analysis showed higher levels of VEGF protein during the periovulatory and periimplantation periods (P < 0.001, and P < 0.05, respectively). Constant expression of VEGF mRNA during the cycle and significant upregulation on Days 22-25 of gestation (vs. Days 9-17; P < 0.001) was observed. Stable levels of VEGFR-1 mRNA and protein were detected in the endometrium of cyclic animals. However, higher VEGFR-1 protein expression was found on Days 16-17 of the estrous cycle (P < 0.01) and Days 13-15 of gestation (P < 0.05). Protein expression of VEGFR-2 was elevated on Days 2-4 of the estrous cycle (P < 0.001), but mRNA levels were constant during the cycle. In pregnancy, VEGFR-2 protein expression started to increase after Day 15 (vs. Days 9-12; P < 0.05), but induction of VEGFR-2 mRNA expression occurred earlier on Days 13-15. It appears from the present study that the VEGF-receptor system is regulated in a temporal and spatial manner during the estrous cycle and early pregnancy in pigs. The results suggest that VEGF-A family members are probably involved in appropriate preparation of endometrium for implantation and in vascular events during implantation in pigs.  相似文献   

5.
Sağsöz H  Saruhan BG 《Theriogenology》2011,75(9):1720-1734
The present study was conducted to demonstrate of the immunohistochemical localization of vascular endothelial growth factor (VEGF) and its receptors (flt1/fms, flk1/KDR and flt4) as well as vascular endothelial growth inhibitor (VEGI) and to determine the correlation of VEGF and its receptors and VEGI with serum sex steroids (estrogen and progesterone) in the bovine uterus during the sexual cycle. The stage of the estrous cycle in 30 Holstein cattle was assessed based on the gross and histological appearance of the ovaries and uterus and on blood steroid hormone levels. Tissue samples obtained from the uterus were fixed in 10% formaldehyde for routine histological processing. During both follicular and luteal phases, positive cytoplasmic and membrane staining was achieved for VEGF and its receptors (flt1/fms, flk1/KDR and flt4) as well as VEGI in the luminal and glandular epithelial cells, the connective tissue and smooth muscle cells, and the vascular endothelial cells and smooth muscle cells in the uterus. The intensity, proportional and total scores determined for VEGF and its receptors (flt1/fms and flt4) as well as VEGI were greater in the luminal and glandular epithelial cells compared to the connective tissue and smooth muscle cells (P < 0.05). Furthermore, the number and intensity of the flk1/KDR positive cells were greater among the connective tissue cells compared to the luminal and glandular epithelial cells (P < 0.05). As a result, it was determined that the expression of VEGF and its receptors as well as VEGI in the bovine uterus during the follicular and luteal phases varied with different cell types. This suggests that depending on the stage of the sexual cycle, these factors may mediate the establishment of an appropriate environment for the nutritional supply and implantation of the embryo primarily due to the stimulation of angiogenesis but also through the increase in the secretory activity of the epithelial cells in the uterus. Furthermore, this indicates that ovarian steroid hormones play a significant role in regulating the expression of VEGF and its receptors as well as VEGI.  相似文献   

6.
Vascular endothelial growth factor (VEGF) is fundamental for development and maintenance of endometrial and placental vascular function during pregnancy. While there are a number of studies on VEGF in the human placenta, they are mostly restricted to late pregnancy. To further understand the role of VEGF in mediating angiogenesis during human early pregnancy, we employed a rhesus monkey early pregnancy model to study the temporal and spatial expression of VEGF and its receptors, fms-like tyrosine kinase (Flt)-1, and kinase-insert domain-containing receptor (KDR) mRNAs and proteins in the uteri on day 12, 18, and 26 of pregnancy using in situ hybridization, RT-PCR, and immunohistochemistry. VEGF mRNA had been identified in the luminal epithelium on day 12, in the glandular epithelium on day 12 and 18, and the highest expression was detected in the walls of some spiral arterioles adjacent to the implantation site on day 18, in the placental villi and in the fetal-maternal border on day 18 and 26. Besides, immunostaining of VEGF was detected in the placental villi and endometrial compartments including spiral arteries walls and the glandular epithelium. The localization of VEGF in the endothelium correlates with the presence of Flt-1 and KDR receptors on vascular structure. All the results above suggest that VEGF-VEGFR pairs were involved in the process of trophoblast invasion, maternal vascular transformation, and fetoplacental vascular differentiation and development during the rhesus monkey early pregnancy. Expression of VEGF, Flt-1, and KDR in the epithelial cells also hints some additionally functional roles of VEGF during early pregnancy.  相似文献   

7.
Ovarian steroids in endometrial angiogenesis   总被引:13,自引:0,他引:13  
Angiogenesis, the sprouting of new blood vessels from pre-existing ones, is fundamental for human endometrial development and differentiation, which are necessary for implantation. This vascular process is supposed to be mainly mediated by the vascular endothelial growth factor (VEGF), also named vascular permeability factor (VPF). We report here the expression and modulation of VEGF and its receptors, Flk-1/KDR and Flt-1, in the functionalis throughout the menstrual cycle. Using immunocytochemistry, VEGF is localized in glandular epithelial cells and in the surrounding stroma, as well as in capillaries and spiral arterioles. The localization of VEGF on the endothelium correlates with the presence of Flt-1 and Flk-1/KDR receptors on vascular structures, including capillary strands that have not yet formed a lumen and that have been previously described in tumors as angiogenic capillaries. The strongest immunoreactivity for both VEGF and Flk-1/KDR receptor on endothelial cells is detected in the proliferative and midsecretory phases. Enhanced expression of VEGF and its Flk-1 receptors on narrow capillary strands during the proliferative phase may account for the rapid capillary growth associated with endometrial regeneration from the residual basal layer following menstrual shedding of the functionalis. The vascular expression of Flt-1 is more important in the secretory than in the proliferative phase, associated with a high microvascular density and an increase in vascular permeability in the implantation period. Consistently with these in vivo observations, the treatment of isolated endometrial stromal cells with estradiol (E(2)), or E(2) + progesterone, significantly increased VEGF mRNA over the control value in a dose-dependent manner. These results demonstrate that the expression of VEGF and its receptors is cyclically modulated by ovarian steroids, and that this endothelial growth factor acts on the endothelium in a paracrine fashion to control endometrial angiogenesis and permeability.  相似文献   

8.
Fibroblastic proliferation accompanies many angiogenesis-related retinal and systemic diseases. Since connective tissue growth factor (CTGF) is a potent mitogen for fibrosis, extracellular matrix production, and angiogenesis, we have studied the effects and mechanism by which vascular endothelial growth factor (VEGF) regulates CTGF gene expression in retinal capillary cells. In our study, VEGF increased CTGF mRNA levels in a time- and concentration-dependent manner in bovine retinal endothelial cells and pericytes, without the need of new protein synthesis and without altering mRNA stability. VEGF activated the tyrosine receptor phosphorylation of KDR and Flt1 and increased the binding of phosphatidylinositol 3-kinase (PI3-kinase) p85 subunit to KDR and Flt1, both of which could mediate CTGF gene induction. VEGF-induced CTGF expression was mediated primarily by PI3-kinase activation, whereas PKC and ERK pathways made only minimal contributions. Furthermore, overexpression of constitutive active Akt was sufficient to induce CTGF gene expression, and inhibition of Akt activation by overexpressing dominant negative mutant of Akt abolished the VEGF-induced CTGF expression. These data suggest that VEGF can increase CTGF gene expression in bovine retinal capillary cells via KDR or Flt receptors and the activation of PI3-kinase-Akt pathway independently of PKC or Ras-ERK pathway, possibly inducing the fibrosis observed in retinal neovascular diseases.  相似文献   

9.
Vascular development and its transformation are necessary for successful hemochorial placentation, and vascular endothelial growth factor (VEGF), angiopoietins, and their receptors may be involved in the molecular regulation of this process. To determine the potential role of these putative regulators in a widely studied primate, the common marmoset, we investigated their mRNA expression and protein location in the placenta throughout pregnancy using in situ hybridization, Northern blot analysis, and immunocytochemistry. VEGF was localized in decidual and cytotrophoblast cells, and its highest expression was found in the maternal decidua. The Flt receptor was exclusively detected in the syncytial trophoblast with increasing expression in placentae from 10 wk to term. Soluble Flt (sFlt) was also detectable by Northern blot analysis. KDR receptor expression was restricted to mesenchymal cells during early placentation and to the fetoplacental vasculature during later placentation. KDR expression increased throughout pregnancy. Angiopoietin-1 (Ang-1) was localized in the syncytial trophoblast, being highly expressed in the second half of gestation. Ang-2 mRNA localized exclusively to maternal endothelial cells, and was highly expressed in 10-wk placentae. The Tie-2 receptor was found in cytotrophoblast cells and in fetal and maternal vessels. High Tie-2 levels were detected in the wall of chorion vessels at 14-wk, 17-wk, and term placentae. These results suggest that the processes of trophoblast invasion, maternal vascular transformation, and fetoplacental vascular differentiation and development are regulated by the specific actions of angiogenic ligand-receptor pairs. Specifically, 1) VEGF/Flt and Ang-1/Tie-2 may promote trophoblast growth, 2) VEGF/KDR and Ang-1/Tie-2 may support fetoplacental vascular development and stabilization, 3) sFlt may balance VEGF actions, and 4) Ang-2/Tie-2 may remodel the maternal vasculature.  相似文献   

10.
To obtain more insight into the relationship between cyclic and regional changes in steroid receptor expression and function-related changes in the various types of cell of the normal human uterus, we performed an immunocytochemical study on paraffin-embedded sections. The distribution and intensity of immunostaining for the oestrogen receptor and the progesterone receptor in the various types of cell were semiquantitatively scored. The data were statistically compared for the different phases of the menstrual cycle and after the menopause, and for the different regions of the corpus and (endo)cervix uteri. During the menstrual cycle, significant changes in oestrogen receptor score were observed in glandular and stromal cells of endometrium basalis and functionalis and in smooth muscle cells of the myometrium. In all types of cell, oestrogen receptor expression reached a maximum in the late proliferative phase. During the early secretory phase, oestrogen receptor staining declined sharply in stromal and smooth muscle cells, whereas, in glandular epithelium, oestrogen receptor expression decreased more gradually. During mid- and late-secretory phases, an increase in oestrogen receptor staining was also observed in predecidualizing stromal cells and smooth muscle cells. Progesterone receptor numbers changed significantly in glandular epithelium but not in stromal and smooth muscle cells. Glandular progesterone receptor expression reached a maximum in the early secretory phase and was then drastically reduced. During mid- and late-secretory phases stromal cells were moderately stained for progesterone receptor in contrast to epithelial gland cells which showed no or very weak staining. No regional variations in steroid receptor distribution in endometrium and myometrium were found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
An immunoperoxidase staining technique was used to localize receptors for progesterone and estrogen in the uterus of the mare. Specific staining for receptors was limited to cell nuclei. During estrus, stromal cells tended to stain more intensely for both receptor types than myometrial cells or luminal and glandular epithelial cells. During diestrus, staining intensities in stromal and myometrial cells tended to decrease. Staining intensities of epithelial cells were not affected by the cycle stage. Early pregnancy did not markedly affect the staining intensities of pregnant mares compared with the nonpregnant mares on Day 14 of diestrus. In mares susceptible to endometritis from which samples were taken during diestrus, stromal and myometrial staining for estrogen receptors was more intense than in endometrium from genitally-normal mares.  相似文献   

12.
This goal of this study was to examine immunohistochemical distribution of leukemia inhibitory factor (LIF), LIF receptor (LIFR), and glycoprotein (gp) 130 in rhesus monkey uterus during the menstrual cycle and early pregnancy. Pregnancy rate was significantly reduced in the control group from 66.7% (12 of 18) to 22.2% (4 of 18) with an injection of goat anti-human recombinant LIF immunoglobulin G into the uterine lumen on Day 8 of pregnancy. LIF was mainly localized in glandular and luminal epithelium. LIF immunostaining during the luteal phase was stronger than it was during the proliferative phase. LIF staining gradually increased from Day 3 of pregnancy and reached its highest level on Day 9. LIFR was mainly localized in the glandular and luminal epithelium. LIFR staining during the luteal phase was stronger than it was during the proliferative phase. LIFR staining began to increase from Day 3 of pregnancy and reached a high level on Days 9 and 11. Gp130, a signal-transducing receptor component of LIF, was mainly localized in the glandular epithelium. A high level of gp130 was found on Days 16 and 20 of menstrual cycle, and from Days 5 to 11 of pregnancy. These results suggest that LIF may play an important role in monkey implantation, as it does in mice.  相似文献   

13.
14.
15.
Cebus apella is a New World monkey that has a menstrual cycle of 18-23 days with implantation at approximately luteal Day 5. The aim of this study was to characterize by lectin- and antibody-labeling the distribution of Muc1 and associated glycans on the endometrial and oviductal epithelium during the luteal phase of the cycle. Endometrial histology showed a thin endometrium, with glands extending deeply into the myometrium. No obvious evidence of secretory differentiation in cells of either the superficial or the basal segments of glands could be obtained using a panel of antibodies and lectins that marked epithelial glycoprotein, and glycosylation changes observed in some other primate endometrial cycles were not observed in this study. Antibodies to human MUC1 were shown to cross-react with C. apella, and Muc1 was localized to the apical epithelial surfaces of both the endometrial and the tubal epithelium, with stronger expression in the latter. Again, no cyclic changes were noted. Antibodies specific to the isoform Muc1/Sec showed strong staining at the apical tubal epithelium, but no reactivity was detectable in the luminal epithelium of the uterus. This observation suggests differences between the two glycocalyces and could help to explain why C. apella embryos do not implant in this location.  相似文献   

16.
Ing NH  Zhang Y 《Theriogenology》2004,62(3-4):403-414
A single physiological dose of estradiol up-regulates estrogen receptor-alpha(ER), progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), c-fos, cyclophilin, and actin mRNAs in the endometrium of ovariectomized ewes. Therefore, we hypothesized that these genes would be up-regulated by the preovulatory surge of estrogen which occurs on the evening of Day 15 in the estrous cycle of sheep. ER and PR mRNA concentrations increased between Day 15 and Day 1 in cyclic ewes in most endometrial epithelial cells, while GAPDH mRNA increased in epithelial and stromal cells in the deep endometrium. Day 15 pregnant ewes had lower expression of ER, PR, GAPDH, cyclophilin and actin genes. For ER and GAPDH mRNAs, the greatest reduction occurred in the superficial endometrium. Ovariectomized ewes demonstrated concentrations of ER, PR, and GAPDH mRNAs that were similar to those in the cyclic ewes. While concentrations of c-fos mRNA did not differ between groups, those of cyclophilin and actin mRNAs were lower in the pregnant and ovariectomized ewes. In conclusion, ER, PR and GAPDH gene expression rose during estrus in endometrial cells with the highest ER gene expression and were repressed in pregnant ewes in superficial endometrial cells with the greatest PR gene expression.  相似文献   

17.
Vascular endothelial cell growth factor (VEGF) is a potent angiogenic factor expressed during embryonic development, during wound healing, and in pathologies dependent on neovascularization, including cancer. Regulation of the receptor tyrosine kinases, KDR and Flt-1, to which VEGF binds on endothelial cells is incompletely understood. Chronic incubation with tumor-conditioned medium or VEGF diminished (125)I-VEGF binding to human umbilical vein endothelial cells, incorporation of (125)I-VEGF into covalent complexes with KDR and Flt1, and immunoreactive KDR in cell lysates. Receptor down-regulation desensitized VEGF activation of mitogen-activated protein kinase (extracellular signal-regulated kinases 1 and 2) and p38 mitogen-activated protein kinase. Preincubation with VEGF or tumor-conditioned medium down-regulated cell surface receptor expression but up-regulated KDR and Flt-1 mRNAs, an effect abrogated by a neutralizing VEGF antibody. Removal of VEGF from the medium led to recovery of (125)I-VEGF binding and resensitization of human umbilical vein endothelial cells. Recovery of receptor expression was inhibited by cycloheximide, indicating that augmented VEGF receptor mRNAs, and not receptor recycling from a cytoplasmic pool, restored responsiveness. As the VEGF receptors promote endothelial cell survival, proliferation, and other events necessary for angiogenesis, the noncoordinate regulation of VEGF receptor proteins and mRNAs suggests that human umbilical vein endothelial cells are protected against inappropriate or prolonged loss of VEGF receptors by a homeostatic mechanism important to endothelial cell function.  相似文献   

18.
Chemokine receptor expression in human endometrium   总被引:11,自引:0,他引:11  
Chemokines play a role in endometrial physiology and pathology and may affect endometrial receptivity and menstrual shedding. Chemokines exert their effect by binding to their relevant receptors, the expression levels of which may modulate their action. In the present study, we examined the expression of chemokine receptors CXCR1 and CXCR2 (receptors for interleukin-8) and CCR5 (receptor for RANTES [regulated-on-activation, normal-T-cell-expressed and -secreted], macrophage inflammatory protein [MIP]-1alpha, and MIP-1beta) in human endometrium. Human endometria (n = 35) were grouped according to the menstrual cycle phase and examined by immunohistochemistry for CXCR1, CXCR2, and CCR5. In both epithelial and stromal cells, CXCR1 and CXCR2 immunoreactivity was detected. Staining was most prominent at the apical and basal aspects of epithelial cells. Intense CCR5 immunostaining was observed in epithelial and stromal compartments throughout the menstrual cycle. Epithelial and stromal staining for CXCR1 reached a peak at the midsecretory phase, during which it was significantly higher than the level of staining during the proliferative phase (P < 0.05). Immunostaining for CXCR2 and CCR5 showed no significant variation across the menstrual cycle. Expression of interleukin-8 and RANTES in endometrium, together with the presence of their receptors, suggests that autocrine and paracrine interactions involving these chemokines may participate in endometrial physiology.  相似文献   

19.
Embryo implantation, endometrial stromal cell decidualization and formation of a functional placenta are critical processes in the establishment and maintenance of pregnancy. Interleukin (IL)-11 signalling is essential for adequate decidualization in the mouse uterus and IL-11 promotes decidualization in the human. IL-11 action is mediated via binding to the specific IL-11 receptor α (IL-11Rα). The present study examined immunoreactive IL-11 and IL-11Rα in cycling rhesus monkey endometrium, at implantation sites in cynomolgus and rhesus monkeys and in human first trimester decidua and defined distinct spatial and temporal patterns. In cycling rhesus monkey endometrium, IL-11 and IL-11Rα increased in both basalis and functionalis regions during the secretory compared with the proliferative phase, with changing cellular locations in luminal and glandular epithelium and stroma. The patterns were similar overall to those previously described in human endometrium. Differences were seen in immunostaining during implantation in cynomologus and rhesus monkey. In the cynomolgus, very little staining for IL-11 or IL-11Rα was seen in syncytio- and cyto-trophoblast cells in the villi between days 12 and 150 of pregnancy although there was moderate staining in cytotrophoblast in the shell between days 12 and 17 and in subpopulations of cytotrophoblast cells invading the arteries at day 17. By contrast in the rhesus monkey between days 24 and 35 of pregnancy and in human first trimester placenta, cyto- and syncytio-trophoblast in the villi but not cytotrophoblast in the shell were positively stained. The most intense staining for both IL-11 and IL-11Rα was present within the decidua in the maternal component of implantation sites in all three primates but moderate staining was also present in maternal vascular smooth muscle and glands perivascular cells and epithelial plaques. These results are consistent with a role for IL-11 both during decidualization and placentation in primates.  相似文献   

20.
SWAP-70 is a unique signaling protein involved in multiple processes including lymphatic cell activation, migration, adhesion, and cytoskeleton organization. Its role in reproductive system remains to be unclear. In the present study, the spatial and temporal expression of SWAP-70 in the uterus during normal menstrual cycle as well as on the feto-maternal interface during pregnancy was investigated in the rhesus monkey by in situ hybridization and immunohistochemistry. It was shown that SWAP-70 was mainly expressed in glandular epithelial cells of uterine endometrium, and the level peaked at the mid-secretory stage. At the beginning of embryonic implantation, SWAP-70 was intensely expressed at the implantation site, mainly localized in glandular and luminal epithelial cells, as well as in primary trophoblasts and epithelial plaque. High level of SWAP-70 was observed in villous cytotrophoblast (VCT), syncytiotrophoblast (ST), column cytotrophoblast, trophoblast shell, interstitial trophoblast, and endovascular trophoblast during gestational days 15–25. From gestational day 50 to term, expression of SWAP-70 decreased evidently and was restricted in VCT cells. What’s more, SWAP-70 co-localized with F-actin on the feto-maternal interface, especially in highly motive extravillous trophoblasts. The data indicate that SWAP-70 may be involved in regulating motility of trophoblast cells during embryonic implantation and placentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号