首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
We examined by using 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) as a radical generator the ability of estrogens to scavenge carbon-centered and peroxyl radicals. Electron spin resonance signals of carbon-centered radicals from AAPH were diminished by catecholestrogens but not by phenolic estrogens, showing that catecholestrogens efficiently scavenged carbon-centered radicals. However, fluorescent decomposition of R-phycoerythrin by AAPH-derived peroxyl radicals was inhibited by catecholestrogens and phenolic estrogens. Evidently, peroxyl radicals were scavenged by catecholestrogens and by phenolic estrogens. However, the scavenging ability of 4-hydroxyestradiol was less than 2-hydroxyestradiol. Strand break of DNA induced by AAPH was inhibited by catecholestrogens, but not by phenolic estrogens under aerobic and anaerobic conditions. Inactivation of lysozyme induced by AAPH was completely blocked by 2-hydroxyestradiol under aerobic and anaerobic conditions, and by 4-hyroxyestradiol only under anaerobic conditions. Peroxidation of arachidonic acid by AAPH was strongly inhibited by catecholestrogens at low concentrations. Only large amounts of phenolic estrogens markedly inhibited lipid peroxidation. These results show that catecholestrogens were antioxidant against AAPH-induced damage to biological molecules through scavenging both carbon-centered and peroxyl radicals, but phenolic estrogens partially inhibited AAPH-induced damage because they scavenged only peroxyl radicals.  相似文献   

2.
3.
4.
5.
The D1 protein of Photosystem II (PSII) is recognized as the main target of photoinhibitory damage and exhibits a high turnover rate due to its degradation and replacement during the PSII repair cycle. Damaged D1 is replaced by newly synthesized D1 and, although reasonable, there is no direct evidence for selective replacement of damaged D1. Instead, it remains possible that increased turnover of D1 subunits occurs in a non-selective manner due for example, to a general up-regulation of proteolytic activity triggered during damaging environmental conditions, such as high light. To determine if D1 degradation is targeted to damaged D1 or generalized to all D1, we developed a genetic system involving simultaneous dual expression of wild type and mutant versions of D1 protein. Dual D1 strains (nS345P:eWT and nD170A:eWT) expressed a wild type (WT) D1 from ectopic and a damage prone mutant (D1-S345P, D1-D170A) from native locus on the chromosome. Characterization of strains showed that all dual D1 strains restore WT like phenotype with high PSII activity. Higher PSII activity indicates increased population of PSII reaction centers with WT D1. Analysis of steady state levels of D1 in nS345P:eWT by immunoblot showed an accumulation of WT D1 only. But, in vivo pulse labeling confirmed the synthesis of both S345P (exists as iD1) and WT D1 in the dual strain. Expression of nS345P:eWT in FtsH2 knockout background showed accumulation of both iD1 and D1 proteins. This demonstrates that dual D1 strains express both forms of D1, yet only damage prone PSII complexes are selected for repair providing evidence that the D1 degradation process is targeted towards damaged PSII complexes. Since the N-terminus has been previously shown to be important for the degradation of damaged D1, the possibility that the highly conserved cysteine 18 residue situated in the N-terminal domain of D1 is involved in the targeted repair process was tested by examining site directed mutants of this and the other cysteines of the D1 protein. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

6.
7.
Breast cancer cells that have undergone partial epithelial–mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-β. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.  相似文献   

8.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号