首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a post-embedding immunogold technique for electron microscopic localization and quantitation of thyroglobulin (TG), thyroxine (T4), and triiodothyronine (T3) in rat thyroid. Labeling for TG was located on rough endoplasmic reticulum, Golgi apparatus, exocytotic vesicles, luminal colloid, colloid droplets, and lysosomes, whereas labeling for thyroid hormones was located on luminal colloid, colloid droplets, and lysosomes. We tested different procedures of fixation, dehydration, embedding, polymerization, and immunoincubation to optimize ultrastructural preservation and immunolabeling. Fixation with glutaraldehyde and osmium was possible with retained antigenicity. Dehydration temperature and the choice of embedding resin were the two crucial factors for good immunolabeling. Low-temperature dehydration greatly improved immunolabeling and could be combined with embedding in the methacrylate LR White or the epoxide Agar 100 (equivalent of Epon 812) polymerized at 40-60 degrees C, as the temperature during subsequent embedding and polymerization was of little importance for the immunoreactivity. Labeling on LR White sections was always higher than on Agar 100 sections. Various etching procedures were tested without improved specific labeling. Etching with hydrochloric acid gave nonspecific labeling of certain cell compartments.  相似文献   

2.
Two methods of demonstrating tissue antigens by ultrastructural enzyme immunohistochemistry were tested. The monoclonal antibodies Ki-M1 and Ki-M4 were chosen for testing the methods because Ki-M1 identifies a relatively stable, and Ki-M4 a very unstable antigen. The two antibodies react selectively with human macrophages and interdigitating reticulum cells or dendritic reticulum cells of lymphoid follicles. The Ki-M1 reaction product is confined to the surface membrane. Ki-M4 reactivity is located on the surface membrane and, less often and to a lesser extent, in the cytoplasm. The technical prerequisites for reliable conservation of the antigens identified by these two antibodies were standardized. The results indicated that prior fixation in 4% paraformaldehyde is preferable for optimum preservation of stable antigens. Application of the primary antibody prior to fixation was found to be the best procedure for demonstrating unstable antigens, although nonspecific reactions were seen more often with this method.  相似文献   

3.
Experimental studies relating to the direct peripheral vascular actions of neurohypophyseal hormones and their synthetic variants are reviewed. In addition, the available data on the comparative pharmacologic actions of these peptides on mammalian vascular smooth muscle are reviewed. Experiments relating to mechanisms by which neurohypophyseal peptides induce contraction of blood vessels are discussed. Neurohypophyseal peptide hormones appear to be able to contract and relax vascular smooth muscle, the exact type of response being dependent on species, vascular bed, and region within a vascular bed. Receptors that subserve both contraction and relaxation may exist on different blood vessels within a species, with a preponderance of receptors that subserve contraction being present in most blood vessels. Concentrations of vasopressin that can be considered physiologic (i.e., 10(-13) to 10(-11) M) are capable of evoking responses on a variety of microscopic as well as large blood vessels. Arginine-vasopressin appears to be, relatively, the most potent contractile substance on rat blood vessels investigated to date; angiotensin is not. Preservative-free oxytocin is a contractile agent on all mammalian arterial and arteriolar vessels so far investigated. A great deal of the controversy surrounding the exact vascular actions elicited by these peptide hormones can be attributed to many factors that were not controlled in older experiments. Moreover, rat pressor assays cannot be utilized to determine structure-activity relationship for neurohypophyseal peptides on vascular smooth muscles. Nuerohypophyseal peptide-induced contractions of vascular smooth muscles can be markedly affected by sex, sex hormones, alcohols, [Ca2+]0, [mg2+]0, oxygen deficit, and glucose-deprivation. Extracellular sodium and potassium ions appear to play relatively little role in vasopressin-induced contractions of rat arterial smooth muscle. The terminal amino group, phenolic hydroxyl, aromatic ring and basicity in positions 1, 2, 3, and 8, respectively, of the neurohypophyseal hormones are important for optimizing hormone-receptor affinity and intrinsic contractile activity on vascular smooth muscle. Basicity in position 8 of these peptide hormones is not an absolute requirement for contractile activation of these smooth muscles. Alterations in molecular structure can result in neurohypophyseal peptides with unique, and selective, microcirculatory effects that may be beneficial in the treatment of low-flow states.  相似文献   

4.
5.
Nine active neurohypophyseal principles have been isolated and identified among the vertebrates. Arginine-vasotocin is the most ubiquitous, occurring in pituitary glands from representatives of all the major vertebrate groups. There is much more variation in structure among the principles that resemble oxytocin. The manner in which these evolved remains unclear. Arginine-vasotocin stimulates smooth muscles from a wide variety of vertebrate species. It can stimulate contraction of oviducts from many jawed fishes and tetrapods. The oxytocin-like peptides are usually less active in this respect. Among adult mammals arginine-vasotocin is replaced by arginine-vasopressin which has much less oxytocin activity. Thus, although arginine-vasotocin may both stimulate oviducts and cause water retention in nonmammalian tetrapods, oxytocic and antidiuretic functions can be regulated independently by oxytocin and vasopressin in mammals. Arginine-vasotocin elicits vasoconstrictor responses in even the most primitive vertebrates. These may be systemic or regional. Their distribution may determine whether arginine-vasotocin acts as a diuretic or an antidiuretic agent. It is possible that the most primitive neurohypophyseal functions were related to cardiovascular regulation and that the neurohypophysis acquired its osmoregulatory functions later in vertebrate evolution.  相似文献   

6.
7.
The inactivation of the neurohypophyseal hormones arginine vasopressin and oxytocin, both 14C-labelled in the C-terminal glycine residue, by enzymes present in kidney homogenates of various species has been investigated, and some of the enzymes responsible have been partially purified and characterized. The Leu-Gly peptide bond of oxytocin is generally most effectively cleaved by kidney homogenates, although with certain species enzymic activity hydrolyzing the Pro-Leu bond is significant. Degradation of arginine vasopressin is slower than oxytocin in all species studied, and appears to occur by a different overall mechanism since cleavage of the Pro-Arg bond is more significant than hydrolysis of the Arg-Gly bond. The enzyme releasing glycinamide from oxytocin and the "Post-Proline Cleaving Enzyme", which releases C-terminal dipeptide from oxytocin and arginine vasopressin, were partially purified from lamb kidney by ammonium sulfate fractionation and column chromatography. The two enzymes are shown to be separate entities with different pH profiles. The prolyl peptidase activity released the C-terminal dipeptides from oxytocin and arginine vasopressin at similar rates and was inhibited by p-chloromercuriphenylsulfonic acid, 1,10-phenanthroline, L-1-tosylamido-2-phenylethylchloromethyl ketone, Co2+, Ca2+, and Zn2+, but significantly enhanced by dithiothreitol. The prolyl peptidase preparation cleaves proline-containing peptide substrates at the Pro-X bond. The rate of cleavage is dependent on the nature of residue X and with the conditions used there is no cleavage when X equals Pro; however, cleavage occurs when X is a D isomer: [Mpr1, D-Arg8] vasopressin is inactivated at a rate similar to [Mpr1, Arg8]- and [Mpr1, Lys8] vasopressin, suggesting that the known prolonged biological action of [Mpr1, D-Arg8] vasopressin is not due to resistance to the prolyl peptidase. In all characteristics tested the lamb kidney prolyl peptidase was identical to the post-proline cleaving enzyme isolated earlier from human uterus. In vivo experiments in the cat suggested that both the glycinamide-releasing enzyme and post-proline cleaving enzyme are present and effective in inactivating neurohypophyseal hormones in the intact animal.  相似文献   

8.
A postembedding labeling technique was employed to visualize human native low density lipoproteins (LDL) during transcytosis in rat arterial endothelium. For this purpose human LDL was perfused through rat vasculature before fixation and processing for immunoelectron microscopy. The LDL particles were located on sections by anti-human apolipoprotein B-100 (LDL) antibodies and secondary antibodies or protein-A conjugated to 10-nm colloidal gold. LDL molecules were seen in plasmalemmal vesicles as well as in the subendothelial space. No colloidal gold was found in the intercellular junctions. Perfusion with reductively methylated LDL, which cannot bind to the LDL receptor, gave a similar labeling pattern, indicating that transcytosis of LDL via plasmalemmal vesicles is most likely receptor independent. Furthermore, the passage of LDL through intact vascular endothelium is a vesicular transport rather than an intercellular diffusion process.  相似文献   

9.
Cyclic 3',5'-nucleotides play an important role in the action of neurohypophyseal hormones on peripheral tissues. All available evidence indicates that cyclic AMP serves as an intracellular mediator in the regulatory action of neurohypophyseal hormones on transport of fluids and solutes across both mammalian and nonmammalian epithelial membranes. There is a close association among binding of neurohypophyseal hormones on membrane, stimulation of cyclic AMP generation, and the functional response. On the other hand, neurohypophyseal hormones have no similar effect on cyclic AMP metabolism in contractile tissues such as smooth muscle. It appears likely that neurohypophyseal hormones stimulate primarily generation of cyclic GMP in contractile tissues, and the increase in cyclic GMP levels may be associated with the contractile response. While the role of cyclic AMP in neurohypophyseal hormone effects in epithelia is firmly established, the possible role of cyclic GMP in contractile responses is largely hypothetical at the present time.  相似文献   

10.
Analogues of arginine-vasopressin (AVP) in which substitution of the proline residue in position 7 (by either sarcosine or N-methylalanine) combined with replacement of the cysteine residue in position 1 were the subject of a fluorescence and molecular mechanics study. We obtained two groups of analogues: selective antidiuretic agonists (cysteine or β-mercaptopropionic acid in position 1) and pressor and uterotonic antagonists (deaminopenicillamine or β-mercapto-β,β-cyclopentamethylene- propionic acid in position 1). Using frequency-domain measurements of fluorescence resonance energy transfer (FRET) we estimated the distance distribution between the phenolic ring of Tyr2 and the disulphide bridge Cys1–Cys6. We also analyzed acrylamide quenching of tyrosyl fluorescence to determine the exposure of the tyrosyl ring to the solvent. Results from fluorescence experiments were compared with those from Monte Carlo simulation (ECEPP/3 force-field). Received: 5 August 1996 / Accepted: 8 December 1996  相似文献   

11.
Penicillinase was localized in log-phase cells of Bacillus licheniformis 749/C by labeling with ferritin-anti-penicillinase immunoglobulin G conjugate. Mildly fixed homogenized cells, isolated subcellular fractions, and frozen thin sections were labeled. The label was distributed in discrete patches in the cell envelope. The patches extended from the inside part of the membrane to the outside part of the wall. The inside part of the membrane was labeled more extensively than the outside part. The cytoplasm also bound some ferritin-immunoglobulin G conjugate. Immunoelectrophoresis and biochemical assay of cytosol material suggest that the cytoplasmic antigenic sites are a protease-sensitive form of penicillinase.  相似文献   

12.
Ubiquitin, a 76 amino acid protein, is covalently attached to abnormal and short-lived proteins, thus marking them for ATP-dependent proteolysis in eukaryotic cells. Free (unconjugated) ubiquitin was localized in hepatoma cells using affinity purified anti-ubiquitin antibodies and colloidal gold immunoelectron microscopy. The anti-ubiquitin antibodies recognize only unconjugated ubiquitin. Ubiquitin is found within the cytoplasm, nucleus, the microvilli, autophagic vacuoles and lysosomes.  相似文献   

13.
14.
15.
Abstract Nitrogenase (Fe-protein) was localized in the free-living cyanobacterium Anabaena cylindrica and in the cyanobionts of Cycas revoluta and Peltigera aphthosa , using colloidal gold as an immunocytochemical marker. The Fe-protein was found to be evenly distributed throughout the heterocyst cytoplasma in A. cylindrica and in both the cyanobionts, including multiple heterocysts of the C. revoluta cyanobiont. No label was observed in the vegetative cells of free-living A. cylindrica or of the cyanobionts, although the cyanobionts apparently live under microaerobic conditions.  相似文献   

16.
[3-Iodo-Tyr2]oxytocin (MIOT), [3,5-diiodo-Tyr2]oxytocin (DIOT), [3-iodo-Tyr2,Lys8]vasopressin (MILVP), [3,5-diiodo-Tyr2,Lys8]vasopressin (DILVP), [3-iodo-Tyr2,Arg8]vasopressin (MIAVP), and [3,5-diiodo-Tyr2,Arg8]vasopressin (DIAVP) were synthesized by iodination of the respective hormones, pruified, and characterized. All the monoiodo hormones had to be freshly prepared prior to bioassays, since on storage they gave rise to hormonal-like biological activity. The biological activities of these iodo analogues were measured in an adenylate cyclase assay employing neurohypophyseal hormone (NHH) sensitive bovine renal medullary membranes, and/or the rat oxytocic assay. In the cyclase assay, DIOT, DILVP, and DIAVP were inactive as agonists or antagonists. MIOT shows no agonistic activity in the renal cyclase system and uterus, but is a weak reversible inhibitor of oxytocin (OT) in both systems. When MIOT (10(-4) M) was preincubated with renal membranes for 10 min at 37 degrees C before addition of OT, it behaved as a noncompetitive inhibitor of NHH-stimulated adenylate cyclase. MILVP and MIAVP appear to be partial agonists with Km (half maximal response) 3 X 10(-6) and 3 X 10(-7) M, respectively, as determined in the cyclase assay. Upon preincubation with renal medullary membranes, MILVP (10(-6) M) behaves as a more potent noncompetitive inhibitor of OT than MIOT. Accordingly, iodo derivatives of NHH do not exhibit sufficient affinity to serve an specific ligands to measure OT, LVP, or AVP receptors in the uterus and kidney. Study of the specificity of inhibition produced by MIOT revealed that this analogue does not act selectively upon NHH receptors. Thus, MIOT modified adenylate cyclase systems which do not have NHH receptors, e.g., the PTH-sensitive adenylate cyclase in bovine renal cortex and the glucagon-sensitive adenylate cyclase in rat liver. DIOT, DILVP, and DIAVP were subjected to catalytic tritiation (employing carrier free tritium) and were converted to [3H]OT (25, 31, and 25 Ci/mmol), [3H]LVP (26 and 23 Ci/mmol), and [3H]AVP (17 Ci/mmol), respectively. These tritiated ligands have been successfully used to measure NHH receptor sites both in kidney and uterine membranes as described in other studies.  相似文献   

17.
We used a proteolytically modified and biotinylated derivative of the cholesterol-binding Theta-toxin (perfringolysin O) to localize cholesterol-rich membranes in cryosections of cultured human lymphoblastoid cells (RN) by electron microscopy. We developed a fixation and immunolabeling procedure to improve the preservation of membranes and minimize the extraction and dislocalization of cholesterol on thin sections. We also labeled the surface of living cells and applied high-pressure freezing and subsequent fixation of cryosections during thawing. Cholesterol labeling was found at the plasma membrane, with strongest labeling on filopodium-like processes. Strong labeling was also associated with internal vesicles of multivesicular bodies (MVBs) and similar vesicles at the cell surface after secretion (exosomes). Tubulovesicular elements in close vicinity of endosomes and the Golgi complex were often positive as well, but the surrounding membrane of MVBs and the Golgi cisternae appeared mostly negative. Treatment of cells with methyl-beta-cyclodextrin completely abolished the labeling for cholesterol. Our results show that the Theta-toxin derivative, when used in combination with improved fixation and high-pressure freezing, represents a useful tool for the localization of membrane cholesterol in ultrathin cryosections.  相似文献   

18.
19.
Immunoelectron microscopic labeling of calsequestrin on ultra-thin sections of rat ventricular muscle prepared by quick-freezing, freeze-drying, and direct embedding in Lowicryl K4M was compared to that observed on ultra-thin sections prepared by chemical fixation, dehydration in ethanol, and embedding in Lowicryl K4M. Brightfield electron microscopic imaging of cryofixed, freeze-dried, osmicated, and Spurr-embedded rat ventricular tissue showed that the sarcoplasmic reticulum was very well preserved by cryofixation and freeze-drying. Therefore, the four structurally distinct regions of the sarcoplasmic reticulum (i.e., the network SR, the junctional SR, the corbular SR, and the cisternal SR) were easily identified even when myofibrils were less than optimally preserved. As previously shown by immunoelectron microscopic labeling of ultra-thin frozen sections of chemically fixed tissue, calsequestrin was confined to the lumen of the junctional SR and of a specialized non-junctional (corbular) SR, and was absent from the lumen of network SR in cryofixed, freeze-dried, Lowicryl-embedded myocardial tissue. In addition, a considerable amount of calsequestrin was also present in the lumen of a different specialized region of the non-junctional SR, called the cisternal sarcoplasmic reticulum. By contrast, relocation of calsequestrin to the lumen of the network SR was observed to a variable degree in chemically fixed, ethanol-dehydrated, and Lowicryl-embedded tissue. We conclude that tissue preparation by cryofixation, freeze-drying, and direct embedding in Lowicryl K4M for immunoelectron microscopic localization of diffusible proteins, such as calsequestrin, is far superior to that obtained by chemical fixation, ethanol dehydration, and embedding in Lowicryl K4M.  相似文献   

20.
Using protein A-colloidal gold immunoelectron microscopy and monospecific antibodies to the weak base primaquine, we have delineated acidic intracellular compartments in the human hepatoma cell line, HepG2. Primaquine specifically accumulated within endocytotic compartments (including CURL vesicles, multivesicular bodies and lysosomes). In addition, the Golgi cisternae were positive. However, the CURL tubules, which contain recycling asialoglycoprotein receptor, did not accumulate primaquine. Thus, there may be a gradient of acidification within the endocytotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号