首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ling F  Wei LQ  Wang T  Wang HB  Zhuo M  Du HL  Wang JF  Wang XN 《Immunogenetics》2011,63(3):155-166
Major histocompatibility complex (MHC) molecules play an important role in the susceptibility and/or resistance to many diseases. To gain an insight into the MHC background and to facilitate the experimental use of cynomolgus macaques, the second exon of the MhcMafa-DOB, -DPB1, and -DQB1 genes from 143 cynomolgus macaques were characterized by cloning to sequencing. A total of 16 Mafa-DOB, 16 Mafa-DPB1, and 34 Mafa-DQB1 alleles were identified, which revealed limited, moderate, and marked allelic polymorphism at DOB, DPB1, and DQB1, respectively, in a cohort of cynomolgus macaques of Vietnamese origin. In addition, 16 Mafa-DOB, 5 Mafa-DPB1, and 8 Mafa-DQB1 alleles represented novel sequences that had not been reported in earlier studies. Almost of the sequences detected at the DOB and DQB1 locus in the present study belonged to DOB*01 (100%) and DQB1*06 (62%) lineages, respectively. Interestingly, four, three, and one high-frequency alleles were detected at Mafa-DOB, -DPB1, and -DQB1, respectively, in this monkeys. The alleles with the highest frequency among these monkeys were Mafa-DOB*010102, Mafa-DPB1*13, and Mafa-DQB1*0616, and these were found in 33 (25.6%) of 129 monkeys, 32 (31.37%) of 102 monkeys, and 30 (31%) of 143 monkeys, respectively. The high-frequency alleles may represent high priority targets for additional characterization of immune function. We also carried out evolutionary and population analyses using these sequences to reveal population-specific alleles. This information will not only promote the understanding of MHC diversity and polymorphism in the cynomolgus macaque but will also increase the value of this species as a model for biomedical research.  相似文献   

2.
MHC-dependent CD8(+) T cell responses have been associated with control of viral replication and slower disease progression during lentiviral infections. Pig-tailed macaques (Macaca nemestrina) and rhesus monkeys (Macaca mulatta), two nonhuman primate species commonly used to model HIV infection, can exhibit distinct clinical courses after infection with different primate lentiviruses. As an initial step in assessing the role of MHC class I restricted immune responses to these infections, we have cloned and characterized classical MHC class I genes of pig-tailed macaques and have identified 19 MHC class I alleles (Mane) orthologous to rhesus macaque MHC-A, -B, and -I genes. Both Mane-A and Mane-B loci were found to be duplicated, and no MHC-C locus was detected. Pig-tailed and rhesus macaque MHC-A alleles form two groups, as defined by 14 polymorphisms affecting mainly their B peptide-binding pockets. Furthermore, an analysis of multiple pig-tailed monkeys revealed the existence of three MHC-A haplotypes. The distribution of these haplotypes in various Old World monkeys provides new insights about MHC-A evolution in nonhuman primates. An examination of B and F peptide-binding pockets in rhesus and pig-tailed macaques suggests that their MHC-B molecules present few common peptides to their respective CTLs.  相似文献   

3.
4.
MHC loci encode highly polymorphic molecules involved in the presentation of self and non-self peptides to cells of the adaptive and innate immune systems. Although variable, MHC-E genes are well conserved among primates and provide signals to natural killer cells. In this study, we sequenced and analyzed MHC-E alleles of pig-tailed macaque (Macaca nemestrina), a nonhuman primate used for HIV pathogenesis and vaccine studies. Among a group of seven macaques, the characterization of eight Mane-E alleles revealed an increased number of polymorphic sites compared with human HLA-E alleles. Phylogenetic analyses of MHC-E alleles from pig-tailed macaque, rhesus monkey (Macaca mulatta) and cynomolgus macaque (Macaca fascicularis) demonstrated that the three macaque species shared six families of macaque MHC-E alleles and indicated that these families existed in the common ancestor 5.5 million years ago. Polymorphic Mane-E sites were not concentrated within the peptide-binding pockets, but were distributed throughout the entire ORF. The peptide-binding domain of Mane-E is similar to its human analogue, and peptide substrates theoretically capable of binding to Mane-E molecules were found in the leader sequence of classical Mane-A and -B molecules. Additionally, the polymorphic amino acids located in the 1 and 2 domains of Mane-E molecules have side chains expected to be oriented toward solvent and away from the peptide-binding groove, suggesting that some of them (positions 19, 73, 79 and 145) might be available for interaction with polymorphic receptors of natural killer cells.  相似文献   

5.
6.
Macaque models are invaluable for AIDS research. Indeed, initial development of HIV-1 vaccines relies heavily on simian immunodeficiency virus-infected rhesus macaques. Neutralizing antibodies, a major component of anti-HIV protective responses, ultimately interact with Fc receptors on phagocytic and natural killer cells to eliminate the pathogen. Despite the major role that Fc receptors play in protective responses, there is very limited information available on these molecules in rhesus macaques. Therefore, in this study, rhesus macaque CD32 (FcγRII) and CD64 (FcγRI) homologues were genetically characterized. In addition, presence of CD16 (FcγRIII), CD32, and CD64 allelic polymorphisms were determined in a group of nine animals. Results from this study show that the predicted structures of macaque CD32 and CD64 are highly similar to their human counterparts. Macaque and human CD32 and CD64 extracellular domains are 88–90% and 94–95% homologous, respectively. Although all cysteines are conserved between the two species, macaque CD32 exhibits two additional N-linked glycosylation sites, whereas CD64 lacks three of them when compared to humans. Five CD32, three CD64, and three CD16 distinct allelic sequences were indentified in the nine animals examined, indicating a relatively high level of polymorphism in macaque Fcγ receptors. Together, these results validate rhesus macaques as models for vaccine development and antibody responses, while at the same time, underscoring the need to take into account the high degree of genetic heterogeneity present in this species when designing experimental protocols.  相似文献   

7.
8.
Positional behavior was quantitatively studied in identified free-ranging Japanese macaques (Macaca fuscata). Five male and 11 female adults were observed in a forested mountain habitat. Data were analyzed for proportion of bout distance, number and time of each locomotion and postural type. Japanese macaques are semiterrestrial, and mainly walk and run quadrupedally. This supports the notion that Macaca are generally quadrupeds. Sex differences in positional behavior were found in the preference of substrate and types of positional behavior. Males and females tend to be terrestrial and arboreal, respectively. Males leap more frequently and longer in distance than do females when they are feeding in trees. These sex differences are considered to be related to differences in morphology, food choice, social activity, and the nursing of infants. Frequencies of leaping and the distance covered by leaping in Japanese macaques are more than those of long-tailed macaques which are arboreal quadrupeds. However, Japanese macaques leap shorter distances at a time than do long-tailed macaques, which indicates that body size may be related to leaping distance more than the frequency of leaping and the distance covered by leaping. Japanese macaques are not as specialized for terrestrial locomotion as pig-tailed macaques. They use both terrestrial and arboreal supports, and are considered to be semi-terrestrial quadrupeds, somewhere between the arboreal long-tailed macaque and the terrestrial pig-tailed macaque. Electronic Publication  相似文献   

9.
10.
The diversity of the antibody response is achieved, in part, by rearrangement of different immunoglobulin (Ig) genes. The Ig heavy chain is made up of a variable region (IGHV), a diversity region (IGHD) and a joining region (IGHJ). Human germline IGHV genes have been grouped into seven multigene subgroups. Size and usage of these subgroups is not equal, the IGHV3 subgroup is the most commonly used (36%), followed by IGHV1/7 (26%), then IGHV4, IGHV5, IGHV2, IGHV6 (15%, 12%, 4%, 3% respectively). The rhesus macaque (Macaca mulatta) is a useful non-human primate model for studies of infection and the database of germline Ig genes for the macaque is gradually growing to become a useful tool in the study of B-cell responses. The proportions of IGHV subgroup usage in the macaque are similar to those in man. Representatives from IGHV3 and IGHV4 subgroups for the macaque have been published, as have germline sequences of the IGHD and IGHJ genes. However, to date there have been no sequences published from the second largest IGHV subgroup, IGHV1. We report the isolation and sequencing of a genomic fragment containing an IGHV1 gene from the macaque. Polymerase chain reaction (PCR) primers designed from this sequence enabled us to amplify and sequence 25 new IGHV1 germline genes. We also isolated two IGHV7 genes, using the same primers, and two IGHV5 genes, using human IGHV5 primers.  相似文献   

11.
Native throughout Asia, rhesus macaques are believed to have the widest native range of any non-human primate and are capable of adapting to an extensive diversity of habitats. Rhesus macaques have caused environmental degradation in introduced habitats, including decreasing bird populations through nest predation. In the 1930s, rhesus macaques were intentionally introduced into what is today Silver Springs State Park (SSSP), central Florida, in an effort to increase tourism. Our objective was to determine whether introduced rhesus macaques in SSSP would consume eggs presented in artificial nests. We used camera traps adjacent to 100 open-cupped artificial bird nests baited with quail eggs near the Silver River. Nests were placed in shrubs and left in the field site for 12 days, representative of the incubation period of native passerine species. Twenty-one nests were depredated by rhesus macaques, nine by nest predators other than macaques, and five nests by an unidentified predator. Nests were more likely to be depredated by macaques when located in areas of high macaque relative abundance. This study suggests introduced rhesus macaques may influence nest predation rates of native bird species in natural areas.  相似文献   

12.
To develop a microsatellite marker set applicable to genome-wide screening of cynomolgus monkeys (Macaca fascicularis), 148 microsatellite markers were selected from the human genome database. The polymorphisms and inheritance of PCR products were determined by screening twenty unrelated monkeys and by analysis of three families, respectively. As a result, 106 primers (72%) gave PCR products of the size expected for humans and rhesus monkeys. Among these products, polymorphism and single-gene inheritance in cynomolgus monkeys was observed for 66 markers (62%). The average number of alleles at the 66 polymorphic loci was 5.86 (range 2–10), and average heterozygosity was 0.63 (range 0.10–0.88). This is the first report of microsatellite markers for cynomolgus monkeys. Chromosomal mapping of these markers is now in progress.  相似文献   

13.
The New World primate Aotus nancymaae has been recommended by the World Health Organization (WHO) as a model for evaluation of malaria vaccine candidates, given its susceptibility to experimental infection with the human malaria parasites Plasmodium falciparum and Plasmodium vivax. We present here the nucleotide sequences of the complete cDNA of MHC-DQA1 and of the polymorphic exon 2 segments of MHC-DQB1/DQB2. In a group of three nonrelated animals captured in the wild, five alleles of MHC-DQA1 could be identified. They all belong to one lineage, namely Aona-DQA1*27. This lineage has not been described in any other New World monkey species studied. In a group of 19 unrelated animals, 14 Aona-DQB1 alleles could be identified which are grouped into the two lineages Aona-DQB1*22 and Aona-DQB1*23. These lineages have been described previously in the common marmoset and cotton-top tamarin. In addition, two Aona-DQB2 sequences could be identified which are highly similar to HLA-DQB2 sequences. Essential amino acid residues contributing to MHC DQ peptide binding pockets number 1 and 4 are conserved or semi-conserved between HLA-DQ and Aona-DQ molecules, indicating a capacity to bind similar peptide repertoires. These results fully support the use of Aotus monkeys as an animal model for evaluation of future subunit vaccine candidates.  相似文献   

14.
Successful human immunodeficiency virus (HIV) vaccines will need to induce effective T-cell immunity. We studied immunodominant simian immunodeficiency virus (SIV) Gag-specific T-cell responses and their restricting major histocompatibility complex (MHC) class I alleles in pigtail macaques (Macaca nemestrina), an increasingly common primate model for the study of HIV infection of humans. CD8+ T-cell responses to an SIV epitope, Gag164-172KP9, were present in at least 15 of 36 outbred pigtail macaques. The immunodominant KP9-specific response accounted for the majority (mean, 63%) of the SIV Gag response. Sequencing from six macaques identified 7 new Mane-A and 13 new Mane-B MHC class I alleles. One new allele, Mane-A*10, was common to four macaques that responded to the KP9 epitope. We adapted reference strand-mediated conformational analysis (RSCA) to MHC class I genotype M. nemestrina. Mane-A*10 was detected in macaques presenting KP9 studied by RSCA but was absent from non-KP9-presenting macaques. Expressed on class I-deficient cells, Mane-A*10, but not other pigtail macaque MHC class I molecules, efficiently presented KP9 to responder T cells, confirming that Mane-A*10 restricts the KP9 epitope. Importantly, naive pigtail macaques infected with SIVmac251 that respond to KP9 had significantly reduced plasma SIV viral levels (log10 0.87 copies/ml; P=0.025) compared to those of macaques not responding to KP9. The identification of this common M. nemestrina MHC class I allele restricting a functionally important immunodominant SIV Gag epitope establishes a basis for studying CD8+ T-cell responses against AIDS in an important, widely available nonhuman primate species.  相似文献   

15.
The increasing use of nonhuman primate models in biomedical research and especially in vaccine development requires the characterization of their immunoglobulin genes and corresponding products. Therefore, we sequenced, cloned and characterized the four immunoglobulin gamma chain constant region genes ( IGHG) present in baboons. These four genes were designated IGHG1, IGHG2, IGHG3 and IGHG4 on the basis of sequence similarities with the four human genes encoding the IgG1, IgG2, IgG3 and IgG4 subclasses and the three known rhesus macaque IGHG genes. Specifically, the baboon IgG1, IgG2, IgG3 and IgG4 sequences exhibit 90.3%, 88.3%, 86.7% and 89.6% amino acid identity to their human counterpart. The percent of amino acid identity of baboon IgG1, IgG2 and IgG3 to the corresponding rhesus macaque sequences is 98.5, 93.1 and 94.4, respectively. Therefore, baboon and rhesus macaque IGHG genes are highly homologous to each other. The majority of differences existing between baboon and human sequences are clustered in the hinge region, with the upper hinge being the most diverse and containing several proline residues. Similar to rhesus macaques, the hinge regions of all baboon IGHG genes consist of a single exon, whereas in humans the IgG3 molecule is encoded by multiple exons. These results confirm the evolutionary instability of the hinge region and indicate that functional properties associated with the hinge regions of baboon and human IgG molecules might differ between the two species.  相似文献   

16.
17.
The distribution of the frequencies of BoLA-DRB3 gene alleles in the Iranian cattle breed Sistani was studied by the PCR-RFLP (“hemi-nested”) assay using restriction endonucleases RsaI, HaeIII and BstYI. In the examined cattle breed (65 animals) 32 alleles have been identified one of which being described for the first time (6.15% frequency). The nucleotide sequence of the polymorphic region of exon 2 of this allele has been determined and submitted in the GenBank database under accession number DQ486519. The submitted sequence has maximum homology (92%) with the previously described sequence DRB3-mRNA from Bos indicus (AccN X79346) and differs from it by 24 nucleotide substitutions which result in 16 amino acid substitutions. The peptide (on the basis of the reconstructed amino acid sequence) has 89% identity to the sequence encoded by the BIDRBF 188 locus (Bos indicus). The results obtained permit the sequence described by us to be considered as a new allele of the BoLA-DRB3 gene (DRB3.2 * X). The total frequency of the main six alleles (DRB3.2*8, *10, *11, *20, *34 and *X) occurring with a frequency of over 5% is about 60% in Iranian Sistani cattle. Fifteen alleles have <1% frequency. The highest frequency was observed for DRB3.2*8 allele (21.54%) like in other previously described breeds of Bos indicus (up to 23.07%). The Iranian breed Sistani has a high level of similarity by the spectrum of BoLA-DRB3 alleles and their frequencies to other Bos indicus breeds and significantly differs by these criteria from the Bos Taurus breeds. The Iranian Sistani herd under study includes alleles associated with to resistance to leukemia (DRB3.2*11 and *23) and to different forms of mastitis (DRB3.2* 2, *7, *11, *23 and *24) although their frequencies are low (from 0.77 to 5.37%). On the whole, a high level of diversity of BoLA-DRB3 gene alleles and the availability of alleles associated with resistance to different diseases makes this breed of interest for breeding practice. The article is published in the original.  相似文献   

18.
Fluctuations in resource availability occur in all ecosystems. To survive, species must alter their foraging strategies according to the quantity, quality, and distribution of available food. The rhesus macaque (Macaca mulatta), a commensal primate, is considered a generalist omnivore and very few studies have addressed how its feeding strategies change with respect to resource availability. We examined dietary diversity and frugivory levels in a group of rhesus macaques at the Buxa Tiger Reserve in northern India across one year. Using behavioural observations of diet and phenological monitoring, we found that although rhesus macaques fed on 107 food items including leaves, flowers, fruits, seeds, and insects, fruits made up ca. 74% of their diet. Fruit consumption correlated positively with fruit availability, but fruit preference appeared to play an important role; 16% of all the fruit species they fed on accounted for >50% of all fruit feeding observations. We suggest that afforestation programs involving preferred fruit species at the agricultural land–forest interface would prevent forest groups of rhesus macaques from gravitating toward human habitations and reduce conflict over anthropogenic resources. We further propose that the movement of certain primates in the direction of human habitations may be contingent on resource availability and food preference rather than an inherent propensity to gravitate to anthropogenic areas.  相似文献   

19.
20.
Chinese rhesus macaques are of particular interest in simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) research as these animals have prolonged kinetics of disease progression to acquired immunodeficiency syndrome (AIDS), compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of major histocompatibility complex (MHC) molecules, including their MHC/peptide-binding motifs, provides valuable information for measuring cellular immune responses and deciphering outcomes of infection and vaccine efficacy. In this study, we have provided detailed characterization of six prevalent Chinese rhesus macaque MHC class I alleles, yielding a combined phenotypic frequency of 29 %. The peptide-binding specificity of two of these alleles, Mamu-A2*01:02 and Mamu-B*010:01, as well as the previously characterized allele Mamu-B*003:01 (and Indian rhesus Mamu-B*003:01), was found to be analogous to that of alleles in the HLA-B27 supertype family. Specific alleles in the HLA-B27 supertype family, including HLA-B*27:05, have been associated with long-term nonprogression to AIDS in humans. All six alleles characterized in the present study were found to have specificities analogous to HLA supertype alleles. These data contribute to the concept that Chinese rhesus macaque MHC immunogenetics is more similar to HLA than their Indian rhesus macaque counterparts and thereby warrants further studies to decipher the role of these alleles in the context of SIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号