首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agricultural crops worldwide suffer from a vast array of fungal diseases which cause severe yield losses. Upon interaction with a pathogen, plants initiate a complex network of defense mechanisms, among which is a dramatic increase in chitinase activity. Chitinases are capable of hydrolyzing chitin-containing fungal cell walls and are therefore thought to play a major role in the plant’s response. One of the strategies to increase plant tolerance to fungal pathogens is the constitutive overexpression of proteins involved in plant-defense mechanisms. The level of protection observed in transgenic plants harboring heterologous chitinase genes varies, depending on the particular combination of enzyme, plant and pathogen tested. Nevertheless, most of these transgenic plants exhibit increased tolerance to fungal diseases relative to their non-transgenic counterparts. The combined expression of chitinases with other plant-defense proteins such as glucanases and ribosome-inactivating proteins further enhances the plant’s resistance to fungal attack. Received 29 January 1997/ Accepted in revised form 01 July 1997  相似文献   

2.
Strategies for antiviral resistance in transgenic plants   总被引:3,自引:0,他引:3  
Genetic engineering offers a means of incorporating new virus resistance traits into existing desirable plant cultivars. The initial attempts to create transgenes conferring virus resistance were based on the pathogen-derived resistance concept. The expression of the viral coat protein gene in transgenic plants was shown to induce protective effects similar to classical cross protection, and was therefore distinguished as 'coat-protein-mediated' protection. Since then, a large variety of viral sequences encoding structural and non-structural proteins were shown to confer resistance. Subsequently, non-coding viral RNA was shown to be a potential trigger for virus resistance in transgenic plants, which led to the discovery of a novel innate resistance in plants, RNA silencing. Apart from the majority of pathogen-derived resistance strategies, alternative strategies involving virus-specific antibodies have been successfully applied. In a separate section, efforts to combat viroids in transgenic plants are highlighted. In a final summarizing section, the potential risks involved in the introduction of transgenic crops and the specifics of the approaches used will be discussed.  相似文献   

3.
《Seminars in Virology》1993,4(6):349-356
The resistance of transgenic plants express genes encoding viral coat proteins to infection by the viruses from which the genes are derived was termed coat protein-mediated resistance (CP-MR) and has been demonstrated for a variety of virus/host combinations. The mechanism of CP-MR is perhaps best understood in the tobacco/TMV system. CP-MR against TMV requires accumulation of CP and does not seem to involve the induction of plant defense mechanisms. The resistance appears to be mainly based on the inhibition of virion disassembly in transgenic cells although there is evidence that a later step of infection is also affected. CP-MR of tobacco to TMV shares some features with classical cross-protection and with CP-MR in some, but not all other host/virus combinations.  相似文献   

4.
5.
6.
Broad virus resistance in transgenic plants   总被引:8,自引:0,他引:8  
Viruses are significant threats to agricultural crops worldwide and the limited sources of natural resistance warrant the development of novel resistance sources. Several methods of transgenic protection have been successfully applied, including protein- and RNA-mediated approaches. Increased understanding of the molecular biology of virus infection is starting to bear fruit, enabling specific strategies to be designed for virus resistance in crops.  相似文献   

7.
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.  相似文献   

8.
With expansion of our understanding of pathogen effector strategies and the multiplicity of their host targets, it is becoming evident that novel approaches to engineering broad-spectrum resistance need to be deployed. The increasing availability of high temporal gene expression data of a range of plant–microbe interactions enables the judicious choices of promoters to fine-tune timing and magnitude of expression under specified stress conditions. We can therefore contemplate engineering a range of transgenic lines designed to interfere with pathogen virulence strategies that target plant hormone signalling or deploy specific disease resistance genes. An advantage of such an approach is that hormonal signalling is generic so if this strategy is effective, it can be easily implemented in a range of crop species. Additionally, multiple re-wired lines can be crossed to develop more effective responses to pathogens.  相似文献   

9.
Tritrophic interactions (plant—herbivore—natural enemy) are basic components of nearly all ecosystems, and are often heavily shaped by bottom-up forces. Numerous factors influence plants’ growth, defense, reproduction, and survival. One critical factor in plant life histories and subsequent trophic levels is nitrogen (N). Because of its importance to plant productivity, N is one of the most frequently used anthropogenic fertilizers in agricultural production and can exert a variety of bottom-up effects and potentially significantly alter tritrophic interactions through various mechanisms. In this paper, the potential effects of N on tritrophic interactions are reviewed. First, in plant-herbivore interactions, N availability can alter quality of the plant (from the herbivore’s nutritional perspective) as food by various means. Second, nitrogen effects can extend directly to natural enemies through herbivores by changes in herbivore quality vis-à-vis the natural enemy, and may even provide herbivores with a defense against natural enemies. Nitrogen also may affect the plant’s indirect defenses, namely the efficacy of natural enemies that kill herbivores attacking the plant. The effects may be expressed via (1) quantitatively and/or qualitatively changing herbivore-induced plant volatiles or other plant features that are crucial for foraging and attack success of natural enemies, (2) modifying plant architecture that might affect natural enemy function, and (3) altering the quality of plant-associated food and shelter for natural enemies. These effects, and their interactive top–down and bottom-up influences, have received limited attention to date, but are of growing significance with the need for expanding global food production (with accompanying use of fertilizer amendments), the widening risks of fertilizer pollution, and the continued increase in atmospheric CO2.  相似文献   

10.
11.
生防菌诱导植物系统抗性及其生化和细胞学机制   总被引:8,自引:1,他引:8  
生防菌通常可利用竞争、抗生、寄生和交叉保护等直接的拮抗机制抑制植物病害;同时某些生防菌还能促进植物生长,诱导植物对真菌、细菌和病毒引起的病害乃至对线虫和昆虫为害的抗性,称为诱导系统抗性(ISR).ISR具有非特异性、广谱性和系统性,其在表型上与病原菌侵染激发的系统获得抗性(SAR)相似,具有同样的效率;但在寄主植物上不发生过敏性坏死反应(HR),无可见症状,为发展和改善更加安全而环境友好的植物保护策略开辟了新的思路.本文总结了生防真菌和细菌诱导系统抗性及其激发子和信号转导途径等方面的研究进展,重点阐述了寄主防御反应的生化和细胞学机制,并对ISR在植物病害生物防治中的应用前景进行了展望.  相似文献   

12.
Despite long-standing plant breeding investments and early successes in genetic engineering, plant viral pathogens still cause major losses in agriculture worldwide. Early transgenic approaches involved the expression of pathogen-derived sequences that provided limited protection against relatively narrow ranges of viral pathotypes. In contrast, this study demonstrates that the ectopic expression of pvr1 , a recessive gene from Capsicum chinense , results in dominant broad-spectrum potyvirus resistance in transgenic tomato plants ( Solanum lycopersicum ). The pvr1 locus in pepper encodes the eukaryotic translation initiation factor eIF4E. Naturally occurring point mutations at this locus result in monogenic recessive broad-spectrum potyvirus resistance that has been globally deployed via plant breeding programmes for more than 50 years. Transgenic tomato progenies that over-expressed the Capsicum pvr1 allele showed dominant resistance to several tobacco etch virus strains and other potyviruses, including pepper mottle virus, a range of protection similar to that observed in pepper homozygous for the pvr1 allele.  相似文献   

13.
Plant diseases are a major constraint for stable crop production in the world. Plants are constantly threatened by different pathogens and have developed an array of mechanisms to defend themselves. A growing body of evidence indicates that ubiquitination, which is one of the most important cellular processes for protein modification in eukaryotic organisms, is involved in the regulation of host defense signaling. Pathogens also exploit ubiquitination to block or interfere with plant defenses. Recent studies in a few model plants have demonstrated that ubiquitination plays a critical role in plant–pathogen interactions that lead either to plant resistance or to successful pathogen invasion of the plant host. This review discusses recent findings about the functions of ubiquitination in host defense and pathogen invasion.  相似文献   

14.
植物抗病毒分子机制   总被引:1,自引:0,他引:1  
在与植物病毒的长期斗争中,植物进化出多种抗病毒机制,其中RNA沉默和R基因介导的病毒抗性是最受人们关注的两种机制.一方面,RNA沉默是植物抵抗病毒侵染的重要手段.植物在病毒侵染过程中可形成病毒来源的双链RNA,经过DCL蛋白的切割、加工形成sRNA,与AGO蛋白结合形成RISC指导病毒RNA的沉默,用于清除病毒.相应地,病毒在与植物的竞争中进化出RNA沉默抑制子,抑制宿主RNA沉默系统以逃避宿主RNA沉默抗病毒反应,增强致病能力.另一方面,植物也进化出R基因介导植物对包括病毒在内的多类病原的抗性.R蛋白直接或间接识别病毒因子,通过一系列的信号转导途径激活植物防御反应,限制病毒的进一步侵染.对植物抗病毒的研究有助于人们对植物抗病分子基础的理解,有重要的科学意义和潜在应用价值.本文综述了植物抗病毒分子机制的重要进展.  相似文献   

15.
Agroinfection   总被引:1,自引:0,他引:1  
Agroinfection, the delivery of viral or viroidal sequences to plants by Agrobacterium, can be used to approach important basic questions in plant molecular biology. The combined use of three biological entities allows the analysis of plant-Agrobacterium interactions using the virus as a marker for T-DNA transfer, or the investigation of viral biology using Agrobacterium as a delivery vehicle for the virus. Plants transgenic for viral constructs offer possibilities for studying recombination, plant protection, and development of high copy number plant vectors. Relevant examples of these approaches are discussed.  相似文献   

16.
The review summarizes reports on molecular aspects of interactions of phytoparasitic nematodes with plant hosts. Data on nematode secretions affecting plants (elicitors, toxins, products of parasitism genes, etc.) are analyzed and information flow pathways comprising all elements of the plant–parasite interaction (from elicitors to defense responses of plant cells) are described. Emphasis is placed on the mechanisms whereby plants are protected from nematode invasion (hypersensitivity reactions, apoptosis, phytoalexins, proteinase inhibitors, PR proteins, etc.). Consideration is given to genetic aspects of plant–parasite relationships. Promising practical approaches to defending plants from phytoparasitic nematodes developed based on the results of studies of molecular mechanisms of plant–parasite interactions are presented in the conclusion.  相似文献   

17.
Cross-protection in plants is the phenomenon whereby a plant preinoculated with a mild virus strain becomes resistant to subsequent inoculation by a related severe strain. It has been used on a large scale in cases where no resistant plants are available. Although several hypotheses have been proposed to explain the molecular mechanism underlying cross-protection, no single hypothesis can account for all the data obtained. Recently, a phenomenon akin to cross-protection has been achieved in transformed plants harboring the cDNA of a part of a viral RNA genome. These results obtained by genetic engineering raise new hopes for obtaining plants resistant to virus infection.  相似文献   

18.
Phytohormones mediate plant development and responses to stresses caused by biotic agents or abiotic factors. The functions of phytohormones in responses to viral infection have been intensively studied, and the emerging picture of complex mechanisms provides insights into the roles that phytohormones play in defense regulation as a whole. These hormone signaling pathways are not simple linear or isolated cascades, but exhibit crosstalk with each other. Here, we summarized the current understanding of recent advances for the classical defense hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) and also the roles of abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinins (CKs), and brassinosteroids (BRs) in modulating plant–virus interactions.  相似文献   

19.
A chimeric gene encoding the alfalfa mosaic virus (AlMV) coat protein was constructed and introduced into tobacco and tomato plants using Ti plasmid-derived plant transformation vectors. The progeny of the self-fertilized transgenic plants were significantly delayed in symptom development and in some cases completely escaped infection after inoculated with AlMV. The inoculated leaves of the transgenic plants had significantly reduced numbers of lesions and accumulated substantially lower amounts of coat protein due to virus replication than the control plants. These results show that high level expression of the chimeric viral coat protein gene confers protection against AlMV, which differs from other plant viruses in morphology, genome structure, gene expression strategy and early steps in viral replication. Based on our results with AlMV and those reported earlier for tobacco mosaic virus, it appears that genetically engineered cross-protection may be a general method for preventing viral disease in plants.  相似文献   

20.
Cross-protection was tested between potato and tobacco strains of Potato virus A, a member of the genus Potyvirus (PVA), in tobacco plants. Cross-protection was effective only at the initiation of infection. The potato strains provided only weak cross-protection against the tobacco strain, whereas the tobacco strain provided strong cross-protection against potato strains. The tamarillo strain (TamMV) showed cross-protection phenotypes mostly resembling those of the potato strains. Chimera of the PVA strains were utilized to map viral genomic regions important for cross-protection. The coat protein (CP) encoding region and the helper component proteinase (HCpro) affected cross-protection and virus accumulation. An amino acid substitution at the CP N-terminus reduced virus accumulation and the ability to overcome cross-protection, whereas amino acid substitutions introduced to the HCpro increased virus accumulation and the ability to overcome cross-protection. Closer sequence relatedness between the protector and challenger isolate, as determined by the CP-encoding sequence, was correlated with an increased cross-protection ability. Cross-protection was not overcome by inoculation with nonencapsidated viral RNA. Thus, the differences in cross-protection abilities between PVA strains and chimera were not explained with the "re-encapsidation model" described for strains of Tobacco mosaic tobamovirus but may be associated with a virus infection-induced RNA silencing mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号