首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A previous NMR investigation of model decapeptides with identical beta-strand sequences and different turn sequences demonstrated that, in these peptide systems, the turn residues played a more predominant role in defining the type of beta-hairpin adopted than cross-strand side-chain interactions. This result needed to be tested in longer beta-hairpin forming peptides, containing more potentially stabilizing cross-strand hydrogen bonds and side-chain interactions that might counterbalance the influence of the turn sequence. In that direction, we report here on the design and 1H NMR conformational study of three beta-hairpin forming pentadecapeptides. The design consists of adding two and three residues at the N- and C-termini, respectively, of the previously studied decapeptides. One of the designed pentadecapeptides includes a potentially stabilizing R-E salt bridge to investigate the influence of this interaction on beta-hairpin stability. We suggest that this peptide self-associates by forming intermolecular salt bridges. The other two pentadecapeptides behave as monomers. A conformational analysis of their 1H NMR spectra reveals that they adopt different types of beta-hairpin structure despite having identical strand sequences. Hence, the beta-turn sequence drives beta-hairpin formation in the investigated pentadecapeptides that adopt beta-hairpins that are longer than the average protein beta-hairpins. These results reinforce our previous suggestion concerning the key role played by the turn sequence in directing the kind of beta-hairpin formed by designed peptides.  相似文献   

2.
Previous conformational analysis of 10-residue linear peptides enabled us to identify some cross-strand side-chain interactions that stabilize beta-hairpin conformations. The stabilizing influence of these interactions appeared to be greatly reduced when the interaction was located at the N- and C-termini of these 10-residue peptides. To investigate the effect of the position relative to the turn of favorable interactions on beta-hairpin formation, we have designed two 15-residue beta-hairpin forming peptides with the same residue composition and differing only in the location of two residues within the strand region. The conformational properties of these two peptides in aqueous solution were studied by 1H and 13C NMR. Differences in the conformational behavior of the two designed 15-residue peptides suggest that the influence of stabilizing factors for beta-hairpin formation, in particular, cross-strand side-chain interactions, depends on their proximity to the turn. Residues adjacent to the turn are most efficient in that concern. This result agrees with the proposal that the turn region acts as the driving force in beta-hairpin folding.  相似文献   

3.
The designed peptide (denoted 20-mer, sequence VFITS(D)PGKTYTEV(D)PGOKILQ) has been shown to form a three-strand antiparallel beta-sheet. It is generally believed that the (D)Pro-Gly segment has the propensity to adopt a type II' beta-turn, thereby promoting the formation of this beta-sheet. Here, we replaced (D)Pro-Gly with Asp-Gly, which should favor a type I' turn, to examine the influence of different type of turns on the stability of the beta-sheet. Contrary to our expectation, the mutant peptide, denoted P6D, forms a five-residue type I turn plus a beta-bulge between the first two strands due to a one amino-acid frameshift in the hydrogen bonding network and side-chain inversion of the first beta-strand. In contrast, the same kind of substitution at (D)Pro-14 in the double mutant, denoted P6DP14D, does not yield the same effect. These observations suggest that the SDGK sequence disfavors the type I' conformation while the VDGO sequence favors a type I' turn, and that the frameshift in the first strand provides a way for the peptide to accommodate a disfavored turn sequence by protruding a bulge in the formation of the beta-hairpin. Thus, different types of turns can affect the stability of a beta-structure.  相似文献   

4.
We previously demonstrated that a beta-hairpin peptide, termed BH(9-10), derived from a single-layer beta-sheet of Borrelia OspA protein, formed a native-like beta-turn in trifluoroethanol (TFE) solution, and it assembled into amyloid-like fibrils at higher TFE concentrations. This peptide is highly charged, and fibrillization of such a hydrophilic peptide is quite unusual. In this study, we designed a circularly permutated peptide of BH(9-10), termed BH(10-9). When folded into their respective beta-hairpin structures found in OspA, these peptides would have identical cross-strand interactions but different turns connecting the strands. NMR study revealed that BH(10-9) had little propensity to form a turn structure both in aqueous and TFE solutions. At higher TFE concentration, BH(10-9) precipitated with a concomitant alpha-to-beta conformational conversion, in a similar manner to the BH(9-10) fibrillization. However, the BH(10-9) precipitates were nonfibrillar aggregation. The precipitation kinetics of BH(10-9) was exponential, consistent with a first-order molecular assembly reaction, while the fibrillization of BH(9-10) showed sigmoidal kinetics, indicative of a two-step reaction consisting of nucleation and molecular assembly. The correlation between native-like turn formation and fibrillization of our peptide system strongly suggests that BH(9-10) adopts a native-like beta-hairpin conformation in the fibrils. Remarkably, seeding with the preformed BH(10-9) precipitates changed the two-step BH(9-10) fibrillization to a one-step molecular assembly reaction, and disrupted the BH(9-10) fibril structure, indicating interactions between the BH(10-9) aggregates and the BH(9-10) peptide. Our results suggest that, in these peptides, cross-strand interactions are the driving force for molecular assembly, and turn formation limits modes of peptide assembly.  相似文献   

5.
It was recently reported that a de novo designed peptide 33mer, betapep-4, can form well-structured beta-sheet sandwich tetramers (Ilyina E, Roongta V, Mayo KH, 1997b, Biochemistry 36:5245-5250). For insight into the pathway of betapep-4 folding, the present study investigates the concentration dependence of betapep-4 self-association by using 1H-NMR pulsed-field gradient (PFG)-NMR diffusion measurements, and circular dichroism. Downfield chemically shifted alphaH resonances, found to arise only from the well-structured betapep-4 tetramer state, yield the fraction of tetramer within the oligomer equilibrium distribution. PFG-NMR-derived diffusion coefficients, D, provide a means for deriving the contribution of monomer and other oligomer states to this distribution. These data indicate that tetramer is the highest oligomer state formed, and that inclusion of monomer and dimer states in the oligomer distribution is sufficient to explain the concentration dependence of D values for betapep-4. Equilibrium constants calculated from these distributions [2.5 x 10(5) M(-1) for M-D and 1.2 x 10(4) M(-1) for D-T at 313 K] decrease only slightly, if at all, with decreasing temperature indicating a hydrophobically mediated, entropy-driven association/folding process. Conformational analyses using NMR and CD provide a picture where "random coil" monomers associate to form molten globule-like beta-sheet sandwich dimers that further associate and fold as well-structured tetramers. Betapep-4 folding is thermodynamically linked to self-association. As with folding of single-chain polypeptides, the final folding step to well-structured tetramer betapep-4 is rate limiting.  相似文献   

6.
Dasgupta B  Pal L  Basu G  Chakrabarti P 《Proteins》2004,55(2):305-315
Like the beta-turns, which are characterized by a limiting distance between residues two positions apart (i, i+3), a distance criterion (involving residues at positions i and i+4) is used here to identify alpha-turns from a database of known protein structures. At least 15 classes of alpha-turns have been enumerated based on the location in the phi,psi space of the three central residues (i+1 to i+3)-one of the major being the class AAA, where the residues occupy the conventional helical backbone torsion angles. However, moving towards the C-terminal end of the turn, there is a shift in the phi,psi angles towards more negative phi, such that the electrostatic repulsion between two consecutive carbonyl oxygen atoms is reduced. Except for the last position (i+4), there is not much similarity in residue composition at different positions of hydrogen and non-hydrogen bonded AAA turns. The presence or absence of Pro at i+1 position of alpha- and beta-turns has a bearing on whether the turn is hydrogen-bonded or without a hydrogen bond. In the tertiary structure, alpha-turns are more likely to be found in beta-hairpin loops. The residue composition at the beginning of the hydrogen bonded AAA alpha-turn has similarity with type I beta-turn and N-terminal positions of helices, but the last position matches with the C-terminal capping position of helices, suggesting that the existence of a "helix cap signal" at i+4 position prevents alpha-turns from growing into helices. Our results also provide new insights into alpha-helix nucleation and folding.  相似文献   

7.
Structurally characterizing partially folded states is problematic given the nature of these transient species. A peptide 20mer, T38AQLIATLKNGRKISLDLQA57 (P20), which has been shown to partially fold in a relatively stable turn/loop conformation (LKNGR) and transient beta-sheet structure, is a good model for studying backbone and side-chain mobilities in a transiently folded peptide by using 13C-NMR relaxation. Here, four residues in P20, A43, T44, G48, and 151, chosen for their positions in or near the loop conformation and for compositional variety, have been selectively 13C-enriched. Proton-coupled and decoupled 13C-NMR relaxation experiments have been performed to obtain the temperature dependencies (278 K to 343 K) of auto- and cross-correlation motional order parameters and correlation times. In order to differentiate sequence-neighbor effects from folding effects, two shorter peptides derived from P20, IATLK (P5) and NGRKIS (P6), were similarly 13C-enriched and investigated. For A43, T44, G48, and 151 residues in P20 relative to those in P5/P6, several observations are consistent with partial folding in P20: (1) C alpha H motional tendencies are all about the same, vary less with temperature, and are relatively more restricted, (2) G48 C alpha H2 phi (t) psi (t) rotations are more correlated, and (3) methyl group rotations are slower and yield lower activation energies consistent with formation of hydrophobic "pockets." In addition, T44 and 151 C beta H mobilities in P20 are more restricted at lower temperature than those of their C alpha H and display significantly greater sensitivity to temperature suggesting a larger enthalpic contribution to side-chain mobility. Moreover, at higher temperatures, side-chain methyls and methylenes in P20 are more motionally restricted than those in P5/P6, suggesting that some type of "folded" or "collapsed" structure remains in P20 for what normally would be considered an "unfolded" state.  相似文献   

8.
Straight-chain, non-natural, nonpolar amino acids norleucine, norvaline, and alpha-amino-n-butyric acid at various spacings do not interact with themselves to stabilize helix formation in alanine-based peptides, but do interact with a Tyr spaced i, i + 4 to stabilize alanine helices, similar to the helix-stabilizing i, i + 4 Tyr-Leu and Tyr-Val interactions reported earlier (Padmanabhan S, Baldwin RL, 1994, J Mol Biol 241:706-713). Leu spaced i, i + 4 from another Leu is measurably helix-stabilizing relative to the corresponding i, i + 3 pair, but less so than for i, i + 4 Val-Leu, Ile-Leu, or Phe-Leu pairs (relative to the corresponding i, i + 3 pairs) when Leu is C-terminal to the other nonpolar amino acid. Our results indicate that limited side-chain flexibility in an alpha-helix strongly favors the interaction between 2 nonpolar residues to stabilize an isolated alpha-helix.  相似文献   

9.
Here we describe the NMR conformational study of a 20-residue linear peptide designed to fold into a monomeric three-stranded antiparallel beta-sheet in aqueous solution. Experimental and statistical data on amino acid beta-turn and beta-sheet propensities, cross-strand side-chain interactions, solubility criteria, and our previous experience with beta-hairpins were considered for a rational selection of the peptide sequence. Sedimentation equilibrium measurements and NMR dilution experiments provide evidence that the peptide is monomeric. Analysis of 1H and 13C-NMR parameters of the peptide, in particular NOEs and chemical shifts, and comparison with data obtained for two 12-residue peptides encompassing the N- and C-segments of the designed sequence indicates that the 20-residue peptide folds into the expected conformation. Assuming a two-state model, the exchange kinetics between the beta-sheet and the unfolded peptide molecules is in a suitable range to estimate the folding rate on the basis of the NMR linewidths of several resonances. The time constant for the coil-beta-sheet transition is of the order of several microseconds in the designed peptide. Future designs based on this peptide system are expected to contribute greatly to our knowledge of the many factors involved in beta-sheet formation and stability.  相似文献   

10.
The beta-turn is the most common type of nonrepetitive structure in globular proteins, comprising ~25% of all residues; however, a detailed understanding of effects of specific residues upon beta-turn stability and conformation is lacking. Human acidic fibroblast growth factor (FGF-1) is a member of the beta-trefoil superfold and contains a total of five beta-hairpin structures (antiparallel beta-sheets connected by a reverse turn). beta-Turns related by the characteristic threefold structural symmetry of this superfold exhibit different primary structures, and in some cases, different secondary structures. As such, they represent a useful system with which to study the role that turn sequences play in determining structure, stability, and folding of the protein. Two turns related by the threefold structural symmetry, the beta4/beta5 and beta8/beta9 turns, were subjected to both sequence-swapping and poly-glycine substitution mutations, and the effects upon stability, folding, and structure were investigated. In the wild-type protein these turns are of identical length, but exhibit different conformations. These conformations were observed to be retained during sequence-swapping and glycine substitution mutagenesis. The results indicate that the beta-turn structure at these positions is not determined by the turn sequence. Structural analysis suggests that residues flanking the turn are a primary structural determinant of the conformation within the turn.  相似文献   

11.
The rational design of loops and turns is a key step towards creating proteins with new functions. We used a computational design procedure to create new backbone conformations in the second turn of protein L. The Protein Data Bank was searched for alternative turn conformations, and sequences optimal for these turns in the context of protein L were identified using a Monte Carlo search procedure and an energy function that favors close packing. Two variants containing 12 and 14 mutations were found to be as stable as wild-type protein L. The crystal structure of one of the variants has been solved at a resolution of 1.9 A, and the backbone conformation in the second turn is remarkably close to that of the in silico model (1.1 A RMSD) while it differs significantly from that of wild-type protein L (the turn residues are displaced by an average of 7.2 A). The folding rates of the redesigned proteins are greater than that of the wild-type protein and in contrast to wild-type protein L the second beta-turn appears to be formed at the rate limiting step in folding.  相似文献   

12.
We have recently reported on the design of a 20-residue peptide able to form a significant population of a three-stranded up-and-down antiparallel beta-sheet in aqueous solution. To improve our beta-sheet model in terms of the folded population, we have modified the sequences of the two 2-residue turns by introducing the segment DPro-Gly, a sequence shown to lead to more rigid type II' beta-turns. The analysis of several NMR parameters, NOE data, as well as Deltadelta(CalphaH), DeltadeltaC(beta), and Deltadelta(Cbeta) values, demonstrates that the new peptide forms a beta-sheet structure in aqueous solution more stable than the original one, whereas the substitution of the DPro residues by LPro leads to a random coil peptide. This agrees with previous results on beta-hairpin-forming peptides showing the essential role of the turn sequence for beta-hairpin folding. The well-defined beta-sheet motif calculated for the new designed peptide (pair-wise RMSD for backbone atoms is 0.5 +/- 0.1 A) displays a high degree of twist. This twist likely contributes to stability, as a more hydrophobic surface is buried in the twisted beta-sheet than in a flatter one. The twist observed in the up-and-down antiparallel beta-sheet motifs of most proteins is less pronounced than in our designed peptide, except for the WW domains. The additional hydrophobic surface burial provided by beta-sheet twisting relative to a "flat" beta-sheet is probably more important for structure stability in peptides and small proteins like the WW domains than in larger proteins for which there exists a significant contribution to stability arising from their extensive hydrophobic cores.  相似文献   

13.
The basic differences between the 20 natural amino acid residues are due to differences in their side-chain structures. This characteristic design of protein building blocks implies that side-chain-side-chain interactions play an important, even dominant role in 3D-structural realization of amino acid codes. Here we present the results of a comparative analysis of the contributions of side-chain-side-chain (s-s) and side-chain-backbone (s-b) interactions to the stabilization of folded protein structures within the framework of the CHARMm molecular data model. Contrary to intuition, our results suggest that side-chain-backbone interactions play the major role in side-chain packing, in stabilizing the folded structures, and in differentiating the folded structures from the unfolded or misfolded structures, while the interactions between side chains have a secondary effect. An additional analysis of electrostatic energies suggests that combinatorial dominance of the interactions between opposite charges makes the electrostatic interactions act as an unspecific folding force that stabilizes not only native structure, but also compact random conformations. This observation is in agreement with experimental findings that, in the denatured state, the charge-charge interactions stabilize more compact conformations. Taking advantage of the dominant role of side-chain-backbone interactions in side-chain packing to reduce the combinatorial problem, we developed a new algorithm, ChiRotor, for rapid prediction of side-chain conformations. We present the results of a validation study of the method based on a set of high resolution X-ray structures.  相似文献   

14.
An elongated version of the de novo designed beta-hairpin peptide, BH8, has allowed us to gain insight into the role of electrostatic interactions in beta-hairpin stability. A Lys-Glu electrostatic pair has been introduced by adding a residue at the beginning and at the end of the N-terminal and C-terminal strands, respectively, of the beta-hairpin structure, in both orientations. The two resulting peptides and controls having Ala residues at these positions and different combinations of Ala with Lys, or Glu residues, have been analyzed by nuclear magnetic resonance (NMR), under different pH and ionic strength conditions. All of the NMR parameters, in particular the conformational shift analysis of Calpha protons and the coupling constants, (3)J(HNalpha), correlate well and the population estimates are in reasonable agreement among the different methods used. In the most structured peptides, we find an extension of the beta-hairpin structure comprising the two extra residues. Analysis of the pH and salt dependence shows that ionic pairs contribute to beta-hairpin stability. The interaction is electrostatic in nature and can be screened by salt. There is also an important salt-independent contribution of negatively charged groups to the stability of this family of beta-hairpin peptides.  相似文献   

15.
The structural and dynamical behavior of the 41-56 beta-hairpin from the protein G B1 domain (GB1) has been studied at different temperatures using molecular dynamics (MD) simulations in an aqueous environment. The purpose of these simulations is to establish the stability of this hairpin in view of its possible role as a nucleation site for protein folding. The conformation of the peptide in the crystallographic structure of the protein GB1 (native conformation) was lost in all simulations. The new equilibrium conformations are stable for several nanoseconds at 300K (>10 ns), 350 K (>6.5 ns), and even at 450 K (up to 2.5 ns). The new structures have very similar hairpin-like conformations with properties in agreement with available experimental nuclear Overhauser effect (NOE) data. The stability of the structure in the hydrophobic core region during the simulations is consistent with the experimental data and provides further evidence for the role played by hydrophobic interactions in hairpin structures. Essential dynamics analysis shows that the dynamics of the peptide at different temperatures spans basically the same essential subspace. The main equilibrium motions in this subspace involve large fluctuations of the residues in the turn and ends regions. Of the six interchain hydrogen bonds, the inner four remain stable during the simulations. The space spanned by the first two eigenvectors, as sampled at 450 K, includes almost all of the 47 different hairpin structures found in the database. Finally, analysis of the hydration of the 300 K average conformations shows that the hydration sites observed in the native conformation are still well hydrated in the equilibrium MD ensemble.  相似文献   

16.
The N-terminal 17 residues of ubiquitin have been shown by 1H NMR to fold autonomously into a beta-hairpin structure in aqueous solution. This structure has a specific, native-like register, though side-chain contacts differ in detail from those observed in the intact protein. An autonomously folding hairpin has previously been identified in the case of streptococcal protein G, which is structurally homologous with ubiquitin, but remarkably, the two are not in topologically equivalent positions in the fold. This suggests that the organization of folding may be quite different for proteins sharing similar tertiary structures. Two smaller peptides have also been studied, corresponding to the isolated arms of the N-terminal hairpin of ubiquitin, and significant differences from simple random coil predictions observed in the spectra of these subfragments, suggestive of significant limitation of the backbone conformational space sampled, presumably as a consequence of the strongly beta-structure favoring composition of the sequences. This illustrates the ability of local sequence elements to express a propensity for beta-structure even in the absence of actual sheet formation. Attempts were made to estimate the population of the folded state of the hairpin, in terms of a simple two-state folding model. Using published "random coil" values to model the unfolded state, and values derived from native ubiquitin for the putative unique, folded state, it was found that the apparent population varied widely for different residues and with different NMR parameters. Use of the spectra of the subfragment peptides to provide a more realistic model of the unfolded state led to better agreement in the estimates that could be obtained from chemical shift and coupling constant measurements, while making it clear that some other approaches to population estimation could not give meaningful results, because of the tendency to populate the beta-region of conformational space even in the absence of the hairpin structure.  相似文献   

17.
Autonomously folding beta-hairpins (two-strand antiparallel beta-sheets) have become increasingly valuable tools for probing the forces that control peptide and protein conformational preferences. We examine the effects of variations in sequence and solvent on the stability of a previously designed 12-residue peptide (1). This peptide adopts a beta-hairpin conformation containing a two-residue loop (D-Pro-Gly) and a four-residue interstrand sidechain cluster that is observed in the natural protein GB1. We show that the conformational propensity of the loop segment plays an important role in beta-hairpin stability by comparing 1 with (D)P--> N mutant 2. In addition, we show that the sidechain cluster contributes both to conformational stability and to folding cooperativity by comparing 1 with mutant 3, in which two of the four cluster residues have been changed to serine. Thermodynamic analysis suggests that the high loop-forming propensity of the (D)PG segment decreases the entropic cost of beta-hairpin formation relative to the more flexible NG segment, but that the conformational rigidity of (D)PG may prevent optimal contacts between the sidechains of the GB1-derived cluster. The enthalpic favorability of folding in these designed beta-hairpins suggests that they are excellent scaffolds for studying the fundamental mechanisms by which amino acid sidechains interact with one another in folded proteins.  相似文献   

18.
We have systematically mutated residues located in turns between beta-strands of the intestinal fatty acid binding protein (IFABP), and a glycine in a half turn, to valine and have examined the stability, refolding rate constants and ligand dissociation constants for each mutant protein. IFABP is an almost all beta-sheet protein exhibiting a topology comprised of two five-stranded sheets surrounding a large cavity into which the fatty acid ligand binds. A glycine residue is located in seven of the eight turns between the antiparallel beta-strands and another in a half turn of a strand connecting the front and back sheets. Mutations in any of the three turns connecting the last four C-terminal strands slow the folding and decrease stability with the mutation between the last two strands slowing folding dramatically. These data suggest that interactions between the last four C-terminal strands are highly cooperative, perhaps triggered by an initial hydrophobic collapse. We suggest that this trigger is collapse of the highly hydrophobic cluster of amino acids in the D and E strands, a region previously shown to also affect the last stage of the folding process (Kim et al., 1997). Changing the glycine in the strand between the front and back sheets also results in a unstable, slow folding protein perhaps disrupting the D-E strand interactions. For most of the other turn mutations there was no apparent correlation between stability and refolding rate constants. In some turns, the interaction between strands, rather than the turn type, appears to be critical for folding while in others, turn formation itself appears to be a rate limiting step. Although there is no simple correlation between turn formation and folding kinetics, we propose that turn scanning by mutagenesis will be a useful tool for issues related to protein folding.  相似文献   

19.
A cyclic somatostatin analog [structure: see text] (1) has been synthesized. Biological assays show that this compound has strong binding affinities to somatostatin hsst2 and hsst5 receptor subtypes (5.2 and 1.2 nM, respectively, and modest affinity to hsst4 (41.1 nM)). Our conformational analysis carried out in DMSO-d6 indicates that this compound exists as two structures arising from the trans and cis configurations of the peptide bond between Phe7 and N-alkylated Gly8. However, neither conformer exhibits a type II' beta-turn. This is the first report of a potent bioactive somatostatin analog that does not exhibit a type II' beta-turn in solution. Molecular dynamics simulations (500 ps) carried out at 300 K indicate that the backbone of compound 1 is more flexible than other cyclic somatostatin analogs formed by disulfide bonds.  相似文献   

20.
The stability and structure of several beta-hairpin peptide variants derived from the C-terminus of the B1 domain of protein G were investigated by a number of experimental and computational techniques. Our analysis shows that the structure and stability of this hairpin can be greatly affected by one or a few simple mutations. For example, removing an unfavorable charge near the N-terminus of the peptide (Glu42 to Gln or Thr) or optimization of the N-terminal charge-charge interactions (Gly41 to Lys) both stabilize the peptide, even in water. Furthermore, a simple replacement of a charged residue in the turn (Asp47 to Ala) changes the beta-turn conformation. Finally, we show that the effects of combining these single mutations are additive, suggesting that independent stabilizing interactions can be isolated and evaluated in a simple model system. Our results indicate that the structure and stability of this beta-hairpin peptide can be modulated in numerous ways and thus contributes toward a more complete understanding of this important model beta-hairpin as well as to the folding and stability of larger peptides and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号