首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Population genetics of peri-domestic Aedes aegypti (Diptera: Culicidae), vector of dengue and yellow fever, were investigated by gel electrophoresis of 10 enzyme loci in 14 samples of mosquito larvae collected in 1997-1998 from localities separated by distances of 3-275 km in French Guiana. Genetic differentiation between geographical populations was generally high (mean FST = +0.111, P < 10(-5)) even among seven sites <30 km apart (FST = +0.137, P < 0.05), but not positively correlated with distance. Thus, Ae. aegypti comprises a mosaic of genetically differentiated populations in French Guiana. This may be attributed to reinvasion from diverse origins through repeated founder events after this vector species was eliminated during the 1940s to 1960s.  相似文献   

2.
Vector blood-feeding frequency, parity, and ovarian development are important factors that can influence pathogen transmission. Parity rates of the dengue vectors Aedes aegypti and Ae. albopictus were determined from females collected from August 2002 to July 2004 in metropolitan Rio de Janeiro. A high frequency of parous Ae. aegypti (92.9%, n = 550) and Ae. albopictus (99.1%, n = 320) females suggested high survivorship of both species. A total of 69% of wild-caught Ae. aegypti females had blood in the midgut compared to 19% of Ae. albopictus. For Ae. aegypti, red-colored midgut contents were associated with ovaries in early stages of development, and brown-colored midguts were associated with ovaries in late stages of maturation. Ovaries of Ae. aegypti females without blood in the midgut were most frequently in stages I and V of Christophers.  相似文献   

3.
Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects.  相似文献   

4.
The daily survival rate of Aedes aegypti (L) (Diptera: Culicidae) is one of the most important parameters in mathematical models of dengue transmission. In this report, we evaluate the effect of adult body size on the survival and dispersal rates of male and female Ae. aegypti, the primary dengue vector in Brazil. Independent of larval diet (i.e. size), the daily survival rate of females recaptured in the field was greater than that of males (smaller: t = 5.617; d.f. = 15; P < 0.05; larger: t = 4.241; d.f. = 16; P < 0.05). Larger males lived longer than smaller males (t = 2.2893; d.f. = 7; P < 0.05), but no size effect was observed for females (t =- 0.086; d.f. = 19; P= 0.932). The daily survival rate of smaller females was similar to that of larger females (0.712 and 0.730, respectively, as calculated by an exponential model, and 0.743 and 0.779, respectively, calculated by a non-linear model), and they dispersed further than larger females (mean distances travelled were 78.8 m and 40.9 m, respectively; t =- 10.22; d.f. = 323; P < 0.05). Adult body size did not influence male dispersal distances (t = 0.904; d.f. = 206; P= 0.367). Given our evidence that smaller females appear to have similar lifespans and evidence from other studies that they bite more frequently during a single gonotrophic cycle than larger females, our results suggest that smaller females have a higher vectorial capacity.  相似文献   

5.
The seasonal prevalence and vertical distribution of oviposition of Aedes aegypti were studied for 53 wk in 1999--2000 using modified ovitraps located at several elevations. The ovitraps were positioned both indoors and outdoors in high-rise apartments in the urban township of John John, Port of Spain, Trinidad, West Indies. Of 988 ovitraps, 490 were collected during the months of the wet season, with 404 (84.4%) positive with 18,536 Ae. aegypti eggs. Of 498 ovitraps collected during the dry season, 335 (67.3%) were positive with 12,255 Ae. aegypti eggs. Data from different elevations showed that significantly more eggs were collected at 13-24 m elevations than any other elevation. The results suggest that the invasion of high rise ecosystems by Ae. aegypti can enhance transmission of dengue. This ecological shift in the Ae. aegypti population exploited new habitats associated with human activity, suggesting that strategies should be developed to educate householders as well as creating appropriate vector control measures to prevent future threats of dengue transmission.  相似文献   

6.
Male reproductive gland proteins (mRGPs) impact the physiology and/or behavior of mated females in a broad range of organisms. We sought to identify mRGPs of the yellow fever mosquito, Aedes aegypti, the primary vector of dengue and yellow fever viruses. Earlier studies with Ae. aegypti demonstrated that "matrone" (a partially purified male reproductive accessory gland substance) or male accessory gland fluid injected into virgin female Ae. aegypti affect female sexual refractoriness, blood feeding and digestion, flight, ovarian development, and oviposition. Using bioinformatic comparisons to Drosophila melanogaster accessory gland proteins and mass spectrometry of proteins from Ae. aegypti male accessory glands and ejaculatory ducts (AG/ED) and female reproductive tracts, we identified 63 new putative Ae. aegypti mRGPs. Twenty-one of these proteins were found in the reproductive tract of mated females but not of virgin females suggesting that they are transferred from males to females during mating. Most of the putative mRGPs fall into the same protein classes as mRGPs in other organisms, although some appear to be evolving rapidly and lack identifiable homologs in Culex pipiens, Anopheles gambiae, and D. melanogaster. Our results identify candidate male-derived molecules that may have an important influence on behavior, survival, and reproduction of female mosquitoes.  相似文献   

7.
Oral susceptibility and vertical transmission of dengue virus type 2 (DENV-2) in an Aedes albopictus sample from Rio de Janeiro was estimated. The infection (36.7%) and transmission (83.3%) rates for Ae. albopictus were higher than those of an Ae. aegypti colony used as control, 32.8 and 60%, respectively. Fourth instar larvae and females descendants of 48.5 and 39.1% of experimentally infected Ae. albopictus showed to harbor the virus. The oral susceptibility and the high capacity to assure vertical transmission exhibited by Ae. albopictus from Brazil reinforce that this species may play a role in the maintenance of the virus in nature and be a threat for dengue control in the country.  相似文献   

8.
Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.  相似文献   

9.
In French Guiana, pyrethroids and organophosphates have been used for many years against Aedes aegypti. We aimed to establish both the resistance level of Ae. aegypti and the ultra low volume spray efficacy to provide mosquito control services with practical information to implement vector control and resistance management. Resistance to deltamethrin and fenitrothion was observed. In addition, the profound loss of efficacy of AquaK'othrine? and the moderate loss of efficacy of Paluthion? 500 were recorded. Fenitrothion remained the most effective candidate for spatial application in French Guiana until its removal in December 2010. Further investigation of the mechanism of resistance to deltamethrin demonstrated the involvement of mixed-function oxidases and, to a lesser extent, of carboxylesterases. However, these observations alone cannot explain the level of insecticide resistance we observed during tube and cage tests.  相似文献   

10.
Abstract Mosquito collections were conducted during a dengue outbreak in Reynosa, Tamaulipas, Mexico, July-December 1995. A total of 6694 adult mosquitoes (four genera and nine species) were captured, of which 2986 (78.3% females and 21.7% males) were Aedes albopictus and 2339 (39.7% females and 60.3% males) were Ae.aegypti. These two species comprised 84.2% of the total collection. Specimens were grouped into pools, nearly 50% of them processed for detection of virus by cythopathic effect in C6-36 and VERO cell cultures and by haemagglutination test. Five pools gave positive haemagglutin-ation reactions and were examined by immunofluorescence using monoclonal antibodies to flavivirus and to dengue virus. One pool of ten Ae.albopictus males was positive for dengue virus: serotypes 2 and 3 were identified by serotype-specific monoclonal antibodies arid confirmed by RT-PCR. This is the first report of Ae.albopictus naturally infected with dengue virus in America. Also, it is the very first time Ae.albopictus males have been found infected with dengue virus in the wild.  相似文献   

11.
12.
Wolbachia is a maternal transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce viral interference and spread into mosquito vector population makes it possible to develop Wolbachia as a biological control agent for dengue control. While Wolbachia induces resistance to dengue virus in the transinfected Aedes aegypti mosquitoes, a similar effect was not observed in Aedes albopictus, which naturally carries Wolbachia infection but still serves as a dengue vector. In order to understand the mechanism of this lack of Wolbachia-mediated viral interference, we used both Ae. albopictus cell line (Aa23) and mosquitoes to characterize the impact of Wolbachia on dengue infection. A serial of sub-lethal doses of antibiotic treatment was used to partially remove Wolbachia in Aa23 cells and generate cell cultures with Wolbachia at different densities. We show that there is a strong negative linear correlation between the genome copy of Wolbachia and dengue virus with a dengue infection completely removed when Wolbacha density reaches a certain level. We then compared Wolbachia density between transinfected Ae. aegypti and naturally infected Ae. albopictus. The results show that Wolbachia density in midgut, fatbody and salivary gland of Ae. albopictus is 80-, 18-, and 24-fold less than that of Ae. aegypti, respectively. We provide evidence that Wolbachia density in somatic tissues of Ae. albopictus is too low to induce resistance to dengue virus. Our results will aid in understanding the mechanism of Wolbachia-mediated pathogen interference and developing novel methods to block disease transmission by mosquitoes carrying native Wolbachia infections.  相似文献   

13.
Aedes aegypti and Ae. albopictus are vectors of dengue viruses, which cause endemic disease in the city of Manaus, capital of the state of Amazonas, Brazil. More than 53 thousand cases have been registered in this city since the first epidemic in 1998. We evaluated the hypothesis that different ecological conditions result in different patterns of vector infestation in Manaus, by measuring the infestation level in four neighborhoods with different urbanization patterns, during the rainy (April), dry (August), and transitional (November) seasons. Ae. aegypti predominated throughout the study areas and sampling periods, representing 86% of all specimens collected in oviposition traps. High frequencies of houses positive for both species were observed in all studied sites, with Ae. aegypti present in more than 84% of the houses in all seasons. Ae. albopictus, on the other hand, showed more spatial and temporal variation in abundance. We found no association between infestation level and house traits. This study highlights the homogeneity of dengue vector distribution in Manaus.  相似文献   

14.
Abstract. A survey of the dengue vector mosquito Aedes aegypti was undertaken using runnel traps to detect immature stages (larvae and pupae) in flooded disused mine shafts and wells in Charters Towers, Queensland, Northern Australia. The town has a history of dengue fever since 1885 when goldminers were the first recorded victims. During the latest dengue epidemic in 1993, 2% of the population had laboratory-confirmed dengue virus Type 2, despite source reduction of Ae.aegypti breeding-sites at ground level or above. This led to suspicions that dengue vector Ae.aegypti breeding-sites might be below ground level. When surveyed in March 1994, Ae.aegypti immatures were found in 9/10 wells and 1/6 mine shafts. The water in wells and mines had similar characteristics -except that turbidity was higher in the mines, which more often contained predators of mosquito immatures.
The copepod Mesocyclops aspericornis was collected from water in 1/10 wells and 2/6 mine shafts. Laboratory predation trials resulted in 95.5–100% predation by 25 copepods/1 on Ae.aegypti first-instar larvae up to 200 larvae/1. Five wells containing Ae.aegypti in the survey were inoculated with fifty indigenous M.aspericornis , and five wells (one positive and four negative in the survey) were left untreated as controls. Nine months later, in December 1994, Ae.aegypti had been eliminated from all five treated wells but all untreated control wells contained Ae.aegypti , except for one well that contained a natural population of M.aspericornis. The role of wells and mines as winter/ dry season refuges of Ae.aegypti in northern Australia is reviewed, and we recommend the use of M.aspericornis as a cost-effective, environmentally acceptable and persistent agent for the sustainable control of Ae.aegypti , especially in inaccessible breeding sites.  相似文献   

15.
白纹伊蚊和埃及伊蚊经卵传递基孔肯雅病毒的研究   总被引:5,自引:0,他引:5  
张海林  张云智 《病毒学报》1993,9(3):222-227
  相似文献   

16.
Toxorhynchites guadeloupensis (Dyar Knab), a poorly known mosquito species, was observed preying upon Aedes aegypti (L.) larvae, in an oviposition trap placed for routine dengue entomological surveillance, during 2003-2004 in the urban area of Boa Vista, Roraima, Brazil. This is the first report for Tx. guadeloupensis using Ae. aegypti oviposition traps as breeding places. This finding may have important consequences in the epidemiology and local dengue control since Ae. aegypti density is a basic variable in dengue prediction. Whether predation of Ae aegypti by Tx. guadeloupensis in the Amazon is of significance, is a question to be examined. Also, larval predation may be a cause for underestimation of the actual Ae aegypti numbers. Together these hypotheses need to be better investigated as they are directly related to dengue epidemiology, to the success of any outbreak prediction and surveillance program.  相似文献   

17.
Aedes aegypti (L.) (Diptera: Culicidae), the main urban vector of dengue, has developed resistance to various insecticides, making its control increasingly difficult. We explored the effects of Argentine Melia azedarach L. (Meliaceae) fruit and senescent leaf extracts on Ae. aegypti larval development and survival, by rearing cohorts of first instar mosquitoes in water with different extract concentrations. We also analysed oviposition deterrent activity in choice tests with extract-treated ovitraps. The leaf extract showed a strong larvicide activity, with all larvae dying before pupation, and significantly delayed development time. It strongly inhibited oviposition by Ae. aegypti females. The fruit extract showed much weaker effects. This first report of highly effective larvicidal, growth regulating and oviposition deterrent activity of a senescent leaf extract of M. azedarach against Ae. aegypti, suggests that such extract could represent a promising tool in the management of this mosquito pest.  相似文献   

18.
19.
20.
Although many laboratory studies of intra-specific competition have been conducted with Ae. aegypti, there have been few studies in natural environments and none that examined density dependence in natural containers at normal field densities. Additionally, current mathematical models that predict Ae. aegypti population dynamics lack empirically-based functions for density-dependence. We performed field experiments in Tapachula, Mexico, where dengue is a significant public health concern. Twenty-one containers with natural food and water that already contained larvae were collected from local houses. Each container was divided in half and the naturally occurring larvae were apportioned in a manner that resulted in one side of the container (high density) having four times the density of the second side (low density). Larvae were counted and pupae were removed daily. Once adults emerged, wing span was measured to estimate body size. Density had a significant impact on larval survival, adult body size, and the time taken to transition from 4(th) instar to pupation. Increased density decreased larval survival by 20% and decreased wing length by an average of 0.19 mm. These results provide a starting point for a better understanding of density dependence in field populations of Ae. aegypti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号