首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, fast and validated method is reported for the simultaneous analysis, in human plasma, of several drugs usually combined in cardiovascular therapy (atenolol, bisoprolol, hydrochlorothiazide, chlorthalidone, salicylic acid, enalapril and its active metabolite enalaprilat, valsartan and fluvastatin) using high performance liquid chromatography–tandem mass spectrometry (LC–MS/MS) with electrospray ionization (ESI), working in multiple reaction monitoring mode (MRM). Separation of analytes and internal standard (pravastatin) was performed on a Luna C18(2) (150 mm × 4.6 mm, 3 μm) column using a gradient elution mode with a run time of 15 min. The mobile phase consisted of a mixture of acetonitrile and water containing 0.01% formic acid and 10 mM ammonium formate at pH 4.1. Sample treatment consisted of a simple protein precipitation with acetonitrile, enabling a fast analysis. The method showed good linearity, precision (RSD% values between 0.7% and 12.7%) and accuracy (relative error values between 0.9% and 14.0%). Recoveries were within 68–106% range and the ion-suppression was not higher than 22% for any analyte. The method was successfully applied to plasma samples obtained from patients under combined cardiovascular treatment.  相似文献   

2.
3.
Cyclic guanosine monophosphate (cGMP) is an important second messenger molecule involved in gating ion channels and activating protein kinases. Here, we describe a validated LC–MS/MS method for the quantification of cGMP in human plasma, utilizing a stable isotope labeled analogue of cGMP as I.S. Plasma samples were extracted and concentrated by weak anion exchange solid phase extraction and the extracts were chromatographically separated on a porous graphitic carbon column. The analytes were detected by positive electrospray ionization and tandem mass spectrometry. The calibration function was linear in the range 1–20 nM and the intra- and inter-day precision showed relative standard deviations of better than 2 and 6%, respectively. The accuracy was always better than 4%. Plasma concentrations in healthy human subjects determined with this method were 3.92 ± 1.17 nM (n = 20). The method was, due to its isotope labeled I.S., matrix independent.  相似文献   

4.
A rapid, sensitive and specific method for the determination of cepharanthine in human plasma using high performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS) was described. Cepharanthine and the internal standard (I.S.), telmisartan, were extracted from human plasma by methanol to precipitate the protein. A centrifuged upper layer was then evaporated and reconstituted with 100 μL methanol. Chromatographic separation was performed on an AGILENT XDB-C8 column (150 mm × 2.1 mm, 5.0 μm, Agilent, USA) using a gradient mobile phase with 1 mmol/L ammonium acetate in water with 0.05% formic acid and methanol. Detection and quantitation was performed by MS/MS using electrospray ionization (ESI) and multiple reaction monitoring (MRM) in the positive ion mode. The most intense [M+H]+ MRM transition of cepharanthine at m/z 607.3 → 365.3 was used for quantitation and the transition at m/z 515.5 → 276.4 was used to monitor telmisartan. The calibration curve was linear within the concentration range of 0.5–200.0 ng/mL (= 0.9994). The limit of quantification (LOQ) was 0.5 ng/mL. The extraction recovery was above 81.1%. The accuracy was higher than 92.3%. The intra- and inter-day precisions were less than 9.66%. The method was accurate, sensitive and simple and was successfully applied to a pharmacokinetic study after single intravenous administration of 50 mg cepharanthine in 12 healthy Chinese volunteers.  相似文献   

5.
A sensitive and specific liquid chromatography–electrospray ionization-mass spectrometry (LC–ESI-MS/MS) method has been developed and validated for the identification and quantification of clebopride in human plasma using itopride as an internal standard. The method involves a simple liquid–liquid extraction. The analytes were separated by isocratic gradient elution on a CAPCELL MG-III C18 (5 μm, 150 mm × 2.1 mm i.d.) column and analyzed in multiple reaction monitoring (MRM) mode with positive electrospray ionization (ESI) interface using the respective [M+H]+ ions, m/z 373.9 → m/z184.0 for clebopride, m/z 359.9 → m/z71.5 for itopride. The method was validated over the concentration range of 69.530–4450.0 pg/ml for clebopride. Within- and between-batch precision (RSD%) was all within 6.83% and accuracy ranged from −8.16 to 1.88%. The LLOQ was 69.530 pg/ml. The extraction recovery was on an average 77% for clebopride. The validated method was used to study the pharmacokinetics profile of clebopride in human plasma after oral administration of clebopride.  相似文献   

6.
A liquid chromatography–electrospray ionization tandem mass spectrometry (HPLC–ESI-MS/MS) method for the determination of andrographolide in human plasma was established. Dehydroandrographolide was used as the internal standard (I.S.). The plasma samples were deproteinized with methanol and separated on a Hanbon C18 column with a mobile phase of methanol–water (70:30, v/v). HPLC–ESI-MS/MS was performed in the selected ion monitoring (SIM) mode using target ions at [M?H2O–H]?, m/z 331.1 for andrographolide and [M?H]?, m/z 331.1 for the I.S. Calibration curve was linear over the range of 1.0–150.0 ng/mL. The chromatographic separation was achieved in less than 6.5 min. The lower limits of quantification (LLOQ) was 1.0 ng/mL. The intra and inter-run precisions were less than 6.95 and 7.22%, respectively. The method was successfully applied to determine the plasma concentrations of andrographolide in Chinese volunteers.  相似文献   

7.
We have developed and validated a sensitive liquid chromatography–electrospray ionization-mass spectrometric (LC–ESI-MS) method for the quantification of verticinone, a major active constituent from Fritillaria hupehensis Hsiao et KC Hsia., in rat plasma. Verticinone and the internal standard (IS), hupehenine, were extracted from plasma samples by a simple liquid–liquid extraction with ethyl acetate after being alkalified by 1 M ammonia hydroxide. Chromatographic separation was achieved on a C18 column using a gradient elution program with methanol and water as the mobile phase. The detection was performed by selected ion monitoring (SIM) mode via positive electrospray ionization (ESI) interface. The lower limit of quantification (LLOQ) was 0.1 ng/mL. The calibration curves were linear (r2 > 0.998) over the concentration range of 0.1–200 ng/mL. Within- and between-run precision was less than 6.5% and accuracy was within ±10.7%. The validated method was applied to the pharmacokinetic study of verticinone in rats after a single oral administration of 1 mg/kg.  相似文献   

8.
A rapid and sensitive liquid chromatography–electrospray ionization tandem mass spectrometry method (LC–ESI-MS/MS) was developed and validated for the determination of goserelin in rabbit plasma. Various parameters affecting plasma sample preparation, LC separation, and MS/MS detection were investigated, and optimized conditions were identified. Acidified plasma samples were applied to Oasis® HLB solid-phase extraction (SPE) cartridges. Extracted samples were evaporated under a stream of nitrogen and then reconstituted with 100 μL mobile phase A. The separation was achieved on a Capcell-Pak C18 (2.0 mm × 150 mm, 5 μm, AQ type) column with a gradient elution of solvent A (0.05% acetic acid in deionized water/acetonitrile = 85/15; v/v) and solvent B (acetonitrile) at a flow rate of 250 μL/min. The LC–MS/MS system was equipped with an electrospray ion source operating in positive ion mode. Multiple-reaction monitoring (MRM) of the precursor–product ion transitions consisted of m/z 635.7 → m/z 607.5 for goserelin and m/z 424.0 → m/z 292.1 for cephapirin (internal standard). The proposed method was validated by assessing specificity, linearity, limit of quantification (LOQ), intra- and inter-day precision and accuracy, recovery, and stability. Linear calibration curves were obtained in the concentration range of 0.1–20 ng/mL (the correlation coefficients were above 0.99). The LOQ of the method was 0.1 ng/mL. Results obtained from the validation study of goserelin showed good accuracy and precision at concentrations of 0.1, 1, 5, 10, and 20 ng/mL. The validated method was successfully applied to a pharmacokinetic study of goserelin after a single subcutaneous injection of 3.6 mg of goserelin in healthy white rabbits.  相似文献   

9.
This paper describes the development and validation of a novel GC-FID method for the determination of α-tocopherol concentration in human plasma which does not requires derivatization. The standard solutions and the plasma working solutions were prepared in absolute ethanol. To determine the concentration of α-tocopherol in human plasma, an aliquot of the plasma sample was deproteinized with ethanol. α-tocopherol was extracted with a mixture of hexane and dichloromethane (9:1). GC separation was performed using a HP-5 capillary column. Nitrogen was used as carrier gas at a flow-rate of 2 ml min 1. Calibration curves were linear over the concentration range 1–30 μg ml 1 (for standard solutions and solutions without endogenous α-tocopherol in plasma) and 5–34 μg ml 1 (for solutions with endogenous α-tocopherol in plasma). Absolute recovery, precision, sensitivity and accuracy assays were carried out. The analytical recovery of α-tocopherol from plasma averaged 97.44%. The limit of quantification (LOQ) and the limit of detection (LOD) of method for standard samples were 0.35 μg.ml 1 and 0.30 μg.ml 1, respectively. Within-day and between-day precision, expressed as the relative standard deviation (RSD) were less than 4%, and accuracy (relative error) was better than 8%. This novel method, developed and validated in our laboratory, could be successfully applied to the in-vivo determination of α-tocopherol. The endogenous α-tocopherol amounts in blood of twelve healthy volunteers with no vitamin drug usage were measured with this method.  相似文献   

10.
Two LC-ESI–MS and CID-MS/MS methods were developed and validated for pharmacokinetic studies of the novel oral taxane derivatives IDN 5738 and IDN 5839, used for preclinical evaluation in mice. The analysis requires 100 μL of plasma sample, involves the addition of an internal standard and protein precipitation with 0.1% HCOOH in acetonitrile. The HPLC separation was obtained on Sunfire C18 column and Selected Reaction Monitoring technique was used to quantify the taxanes. The recoveries were more than 90%; the methods were linear over the validated concentrations range of 25–1500 ng/mL for IDN 5738 and 25–5000 ng/mL for IDN 5839 and had a limit of detection of 0.14 and 0.25 ng/mL, respectively. The inter-day coefficient of variation (CV%) of the calibration standards ranged between 1.3 and 7.2% for IDN 5738 and between 0.0 and 9.0% for IDN 5839 and the mean accuracy was in the range 85.3–112.0% for IDN 5738 and between 80.0 and 111.0% for IDN 5839. Moreover, analysing quality control plasma samples on three different days, the methods resulted precise and accurate showing intra- and inter-day CV within 12% for both analytes, and accuracy of 92.0–113.3% and 85.9–105.7% for IDN 5738 and IDN 5839, respectively. With these methods, we studied for the first time, the pharmacokinetics of the two taxanes showing for both, good oral bioavailability (>50%).  相似文献   

11.
The present study aims at developing a simple, sensitive and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the quantification of pantoprazole sodium (PS) in human plasma using pantoprazole D3 (PSD3) as internal standard (IS). Chromatographic separation was performed on Zorbax SB-C18, 4.6 mm × 75 mm, 3.5 μm, 80 Å column with an isocratic mobile phase composed of 10 mM ammonium acetate (pH 7.10): acetonitrile (30:70, v/v), pumped at 0.6 mL/min. PS and PSD3 were detected with proton adducts at m/z 384.2 → 200.1 and 387.1 → 203.1 in multiple reaction monitoring (MRM) positive mode, respectively. Precipitation method was employed in the extraction of PS and PSD3 from the biological matrix. This method was validated over a linear concentration range of 10.00–3000.00 ng/mL with correlation coefficient (r) ≥ 0.9997. Intra- and inter-day precision of PS were found to be within the range of 1.13–1.54 and 1.76–2.86, respectively. Both analytes were stable throughout freeze/thaw cycles, bench top and postoperative stability studies. This method was successfully utilized in the analysis of blood samples following oral administration of PS (40 mg) in healthy human volunteers.  相似文献   

12.
BMS-754807 and metformin were co-administered in drug discovery studies which required the quantitation of both compounds in plasma. Since the two compounds are chemically and structurally dissimilar, developing a single bioanalytical method presented a number of chromatographic challenges including the achievement of appropriate retention times and peak shapes on a single analytical column. To address this chromatographic challenge, we investigated different LC columns under different gradient elution schemes using aqueous/organic mobile phases. Using unbonded silica column and aqueous/methanol mobile phase, we were able to obtain robust and well-resolving chromatographic conditions to support the development and implementation of a single LC–MS/MS bioanalytical method. The use of sub-2 micron particle sizes and a high flow rate, which are attainable with UPLC systems, enhanced the method. The method performance evaluation showed that the method easily met the normally used acceptance criteria for bioanalytical methods, namely a deviation of ±15% from the nominal concentration except at lower limit of quantitation (LLOQ), where ±20% is accepted. The reported LLOQ of 7.8 ng/ml, for both BMS-754807 and metformin, was adequate to support the pharmacokinetic studies.  相似文献   

13.
We herein describe the development of an LC–MS method for simultaneous determination of astilbin and 3′-O-methylastilbin in rat plasma. A simple liquid–liquid extraction procedure was followed by injection of the extracts on to a Shim-pack C18 column (150 mm × 2.0 mm I.D., 5 μm) with gradient elution and detection in negative ionization mode. Initially, the method was validated regarding linearity, accuracy and precision. The correlation coefficients of all the calibration curves showed good linearity (r > 0.999) within test ranges, and the relative deviation was less than 10% for intra- and inter-day assays. Besides, this method was also validated for its stability, extraction efficiency, matrix effect and so on. Finally, this proposed method was successfully applied to rat pharmacokinetic study and yielded the most comprehensive data on systemic exposure of them to date.  相似文献   

14.
A sensitive and specific electrospray ionization liquid chromatography–tandem mass spectrometry method was developed to detect diosgenin in the plasma of normal and hyperlipidemic rats. Diosgenin was extracted with n-hexane–ethyl acetate (9:1, v/v) using sarsasapogenin as an internal standard. With multiple reaction monitoring modes, linear calibration curves were obtained in the range 10–1500 ng/mL (r  0.9979) and the limit of quantification was 10 ng/mL. Intra- and inter-assay variabilities were within 7.74%, and accuracies were between ?5.33% and 1.50%. The assay was successfully applied to study pharmacokinetics in rats after oral administration of diosgenin. Significantly different pharmacokinetics between normal and hyperlipidemic rats were observed, which would be beneficial for the clinical use of diosgenin.  相似文献   

15.
A highly sensitive and rapid method for the analysis of isradipine in human plasma using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) was developed. The procedure involves a simple liquid–liquid extraction of isradipine and amlodipine (IS, internal standard) with methyl-t-butyl ether after alkaline treatment and separation by RP-HPLC. Detection was performed by positive ion electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode, monitoring the transitions m/z 372.1  m/z 312.2 and m/z 408.8  m/z 237.9, for quantification of isradipine and IS, respectively. The standard calibration curves showed good linearity within the range of 10 to 5000 pg/mL (r2  0.9998). The lower limit of quantitation (LLOQ) was 10 pg/mL. The retention times of isradipine (0.81 min) and IS (0.65 min) suggested the potential for high throughput of the proposed method. In addition, no significant metabolic compounds were found to interfere with the analysis. This method offered good precision and accuracy and was successfully applied for the pharmacokinetic and bioequivalence studies of 5 mg of sustained-release isradipine in 24 healthy Korean volunteers.  相似文献   

16.
A simple, sensitive and rapid method for the analysis of lumefantrine in rat plasma using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) was developed. Detection was performed by positive ion electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode. The method included a chromatographic run of 5 min using a C18 analytical column and the calibration curve was linear over the concentration range of 2–500 ng/mL with a correlation coefficient (r) of 0.996 or better. The intra- and inter-day assay precision ranged from 1.5 to 7.5% and 5.5 to 7.7%, respectively, and intra- and inter-day assay accuracy was between 91.3–109.7% and 97.0–104.7%, respectively. The method was successfully applied for the pharmacokinetic study in rats.  相似文献   

17.
A simple sensitive and robust method for simultaneous determination of citalopram and desmethylcitalopram was developed using liquid chromatography tandem mass spectrometry (LC–MS/MS). A 200 μL aliquot of plasma sample was employed and deproteinized with methanol and desipramine was used as the internal standard. After vortex mixing and centrifugation, the supernatant was diluted with water (1:1, v/v) and then directly injected to analysis. Analytes were separated by a Zorbax XDB C18 column with the mobile phase composed of acetonitrile and water (30:70, v/v) with 0.25% formic acid and monitored in MRM mode using a positive electrospray source with tandem mass spectrometry detection. The total run time was 3.5 min. The dynamic range was 0.2–100 ng/mL for citalopram and 0.25–50 ng/mL for desmethylcitalopram, respectively. Compared to the best existing literatures for plasma samples, the same LOQ for CIT (0.5 ng/mL) and lower LOQ for DCIT (0.25 vs 5 ng/mL) were reached, and less sample preparation steps and runtime (3.5 vs 10 min) were taken for our method. Accuracy and precision was lower than 8% and lower than 11.5% for either target. Validation results and its application to the analysis of plasma samples after oral administration of citalopram in healthy Chinese volunteers demonstrated the method was applicable to pharmacokinetic studies.  相似文献   

18.
Flavanoid kaempferol is mainly present as glucuronides and sulfates in rat plasma, and small amounts of the intact aglycone are also detected. In the this study, a rapid, specific and sensitive liquid chromatography–electrospray ionization-tandem mass spectrometry method (HPLC–MS/MS) was developed and validated for determination of kaempferol and its major metabolite glucuronidated kaempferol in rat plasma. A liquid–liquid extraction with acetic ether was involved for the extraction of kaempferol and internal standard. Analytes were separated on a C18 column (150 mm × 2.1 mm, 4.5 μm, Waters Corp.) with isocratic elution at a flow-rate of 0.3 ml min−1. The mobile phase was consisted of 0.5% formic acid and acetonitrile (50:50, v/v). The Quattro Premier HPLC–MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. The method was validated according to the FDA guidelines for validation of bioanalytical method. The validated method was successfully applied to the study of the pharmacokinetics in rats after oral administration of kaempferol with different doses.  相似文献   

19.
This paper describes a rapid and sensitive method for the quantitation of 20(S)-protopanaxadiol (PPD) in human plasma based on high-performance liquid chromatography–tandem mass spectrometry (LC–MS/MS). The analyte and internal standard (I.S.), ginsenoside Rh2, were extracted from plasma by liquid–liquid extraction and separated on a Zorbax extend C18 analytical column using methanol–acetonitrile-10 mM ammonium acetate (47.5:47.5:5, v/v/v) as mobile phase. Detection was by tandem mass spectrometry using electrospray ionization in the positive ion mode and multiple reaction monitoring (MRM). The assay was linear over the concentration range 0.1–100.0 ng/ml with a limit of detection of 0.05 ng/ml. The method was successfully applied to a clinical pharmacokinetic study in healthy volunteers after a single oral administration of a PPD 25 mg capsule.  相似文献   

20.
Milbemectin is a widely used veterinary antiparasitic agent. A high-performance liquid chromatography with fluorescent detection (HPLC–FLD) method is described for the determination of milbemectin in dog plasma. The derivative procedure included mixing 1-methylimizole [MI, MI-ACN (1:1, v/v), 100 μL], trifluoroacetic anhydride [TFAA, TFAA-ACN (1:2, v/v), 150 μL] with a subsequent incubation for 3 s at the room temperature to obtain a fluorescent derivative, which is reproducible in different blood samples and the derivatives proved to be stable for at least 80 h at room temperature. HPLC method was developed on C18 column with FLD detection at an excitation wavelength of 365 nm and emission wavelength of 475 nm, with the mobile phase consisting of methanol and water in the ratio of 98:2 (v/v). The assay lower limit of quantification was 1 ng/mL. The calibration curve was linear over concentration range of 1–200 ng/mL. The intra- and inter-day accuracy was >94% and precision expressed as % coefficient of variation was <5%. This method is specific, simple, accurate, precise and easily adaptable to measure milbemycin in blood of other animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号