首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and sensitive method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) for simultaneous determination of adducts from acrylamide, glycidamide and ethylene oxide to N-terminal valines in hemoglobin (Hb) was developed. This new procedure is based on the same principles as the N-alkyl Edman procedure for analysis of adducts from electrophilic agents to N-terminal valines in Hb. The N-substituted valines can be detached, enriched and measured selectively as thiohydantoins by the use of an Edman reagent, in this case fluorescein isothiocyanate (FITC). This procedure is denoted as the “adduct FIRE procedure” as the FITC reagent is used for measurement of adducts (R) formed from electrophilic compounds with a modified Edman procedure. In this study, fluorescein thiohydantoin (FTH) analytes of N-substituted valines from acrylamide, glycidamide and ethylene oxide, as well as their corresponding hepta- and tri-deuterium-substituted analogues, were synthesized. These analytes (n = 8) were then characterized by LC–MS/MS (ESI, positive ion mode) and obtained product ions were interpreted. A considerable work with optimization of the FIRE procedure™, resulted in a procedure in which low background levels of the studied adducts could be measured from 250 μL lyzed whole blood samples (human non-smokers). The analytes were enriched and purified with solid phase extraction columns and analyzed by LC–MS/MS with LOQ down to 1 pmol adduct/g Hb. Compared to other procedures for determination of N-terminal Hb adducts, the introduction of FITC has led to a simplified procedure, where whole blood also can be used, giving new opportunities and reduced hand on time with increased sample throughput.  相似文献   

2.
The discrepancy of results for the quantification of androstenedione in human serum between a radioimmunoassay (RIA) method and high performance liquid chromatography tandem-mass spectrometry (LC–MS/MS) was investigated. RIA overestimated concentrations compared to LC–MS/MS on 59 clinical samples (RIA = 1.79 × LC–MS/MS + 0.94). RIA kit and LC–MS/MS calibrants were also determined by both methods. The RIA performed with improved accuracy on the calibrants (RIA = 1.35 × LC–MS/MS − 0.28). Lipid, protein, electrolyte content, and pH of the two sets of calibrants were further investigated. The RIA calibrants contained little lipid material, while the LC–MS/MS calibrant material contained the same levels expected in normal serum/plasma. The pH and sex hormone binding globulin (SHBG) values were different between the RIA calibrants and the LC–MS/MS calibrant material (SHBG, 31 ± 2 and 38 ± 2 nmol/l; pH, 8.27 ± 0.18 and 8.66 ± 0.03, respectively). No correlation was observed between androstenedione RIA and LC–MS/MS discrepancy and lipid or protein. LC–MS/MS sample preparation was tested for the removal of protein-bound material and recovery determined (99–108%). The corresponding RIA results overestimated androstenedione by 52–174% compared to LC–MS/MS. The results here demonstrate that LC–MS/MS is the more accurate method.  相似文献   

3.
Determination of estrogens in plasma is important in evaluation of effects of some anticancer drugs, such as aromatase inhibitors. However, as reported previously, high performance liquid chromatography–radio immunoassay (HPLC–RIA) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) with chemical derivatization require complicated sample preparation. In this study, a highly sensitive and simple method for determination of estrone (E1), 17β-estradiol (E2) and estrone 3-sulfate (E1S) in human plasma has been developed. Following diethylether extraction from plasma, analytes were purified by immunosorbents and then determined by LC–MS/MS using electrospray ionization (ESI). Immunosorbents were prepared by immobilization of specific antibodies raised against each analyte onto solid support. Use of selective immunosorbents in sample preparation removed interference in plasma samples that would cause ionization suppression, and markedly improved the sensitivity of LC–MS/MS for these analytes, without derivatization. Calibration curves of each analyte showed good linearity and reproducibility over the range of 0.05–50 pg/injection for E1, 0.2–50 pg/injection for E2 and 0.05–300 pg/injection for E1S, respectively. The mean values of lower limits of quantification (LLOQ) in human plasma corrected by recovery of deuterated estrogens (internal standard, I.S.) were 0.1892 pg/mL for E1, 0.7064 pg/mL for E2 and 0.3333 pg/mL for E1S, respectively. These LLOQ values were comparable to those previous reported using HPLC–RIA and LC–MS/MS. Using this method, the normal levels of three estrogens in healthy female plasma (n = 5) were determined. The mean values of E1, E2 and E1S were 38.0 pg/mL (range 24.8–53.0), 34.3 pg/mL (22.6–46.6) and 786 pg/mL (163–2080), respectively. The immunoaffinity LC–MS/MS described here allows sensitive and accurate quantification of E1, E2 and E1S without laborious sample preparation.  相似文献   

4.
A total on-line analysis of a target protein from a plasma sample was made using a selective immunoextraction step coupled on-line to an immobilized enzymatic reactor (IMER) for the protein digestion followed by LC–MS/MS analysis. For the development of this device, cytochrome c was chosen as model protein due to its well-known sequence. An immunosorbent (IS) based on the covalent immobilization of anti-cytochrome c antibodies on a solid support was made and an immunoextraction procedure was carefully developed to assess a selective extraction of the target protein from plasma. For the first time, IS was easily coupled on-line with a laboratory-made IMER based on pepsin. The whole on-line device (IS-IMER-LC-MS/MS) allowed the quantification of cytochrome c from 8.5 pmol to 1.7 nmol in buffer medium. Finally, this device was applied to the analysis of only 85 pmol of cytochrome c from plasma with a RSD value lower than 10% (n = 3).  相似文献   

5.
BMS-708163 is a γ-secretase inhibitor that is being developed for the treatment of Alzheimer's disease. Several LC–MS/MS methods have been developed for the determination of BMS-708163 in both plasma and cerebrospinal fluid in support of dog, rat, mouse and human studies. To support non-clinical studies, an LC–MS/MS method with a lower limit of quantitation (LLOQ) of 5 ng/mL, was developed and validated in dog, rat, and mouse plasma by using the deprotonated ion as the precursor ion. To support clinical studies, an LC–MS/MS method with LLOQ of 0.1 ng/mL, was developed and validated in human plasma by using the formate adduct as the precursor ion. Formic acid (0.01%) in water and acetonitrile was found to be the most favorable mobile phases for both deprotonated and formate adduct ions in negative electrospray ionization mode. A combination of a 3M Empore™ C18 plate for SPE and a Waters Atlantis dC18 analytical column for separation was used to achieve a highly selective solid phase extraction and chromatographic procedure from plasma without dry down and reconstitution steps. In the development of an assay for BMS-708163 in cerebral spinal fluid (CSF), significant non-specific binding of BMS-708163 was observed and resolved with pre- or post-spike of 0.2% Tween 20 into CSF samples. A dilute-and-shoot LC–MS/MS method with LLOQ of 0.1 ng/mL was developed and validated to assess BMS-708163 exposure in human CSF.  相似文献   

6.
7.
A wide variety of sulfur metabolites play important roles in plant functions. We have developed a precise and sensitive method for the simultaneous measurement of several sulfur metabolites based on liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) and 34S metabolic labeling of sulfur-containing metabolites in Arabidopsis thaliana seedlings. However, some sulfur metabolites were unstable during the extraction procedure. Our proposed method does not allow for the detection of the important sulfur metabolite homocysteine because of its instability during sample extraction. Stable isotope-labeled sulfur metabolites of A. thaliana shoot were extracted and utilized as internal standards for quantification of sulfur metabolites with LC–MS/MS using S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), glutathione (GSH), and glutathione disulfide (GSSG) as example metabolites. These metabolites were detected using electrospray ionization in positive mode. Standard curves were linear (r2 > 0.99) over a range of concentrations (SAM 0.01–2.0 μM, SAH 0.002–0.10 μM, Met 0.05–4.0 μM, GSH 0.17–20.0 μM, GSSG 0.07–20.0 μM), with limits of detection for SAM, SAH, Met, GSH, and GSSG of 0.83, 0.67, 10, 0.56, and 1.1 nM, respectively; and the within-run and between-run coefficients of variation based on quality control samples were less than 8%.  相似文献   

8.
A rapid, selective and highly sensitive high performance liquid chromatography–tandem mass spectrometry method (LC–MS/MS) was developed and validated for the determination and pharmacokinetic investigation of eptifibatide in human plasma. Eptifibatide and the internal standard (IS), EPM-05, were extracted from plasma samples using solid phase extraction. Chromatographic separation was performed on a C18 column at a flow rate of 0.5 mL/min. Detection of eptifibatide and the IS was achieved by tandem mass spectrometry with an electrospray ionization (ESI) interface in positive ion mode. Traditional multiple reaction monitoring (MRM) using the transition of m/z 832.6 → m/z 646.4 and m/z 931.6 → m/z 159.4 was performed to quantify eptifibatide and the IS, respectively. The calibration curves were linear over the range of 1–1000 ng/mL with the lower limit of quantitation validated at 1 ng/mL. The intra- and inter-day precisions were within 13.3%, while the accuracy was within ±7.6% of nominal values. The validated LC–MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of eptifibatide after intravenous (i.v.) administration of a 45 μg/kg bolus of eptifibatide to 8 healthy volunteers.  相似文献   

9.
Amphetamines are a group of sympathomimetic drugs that exhibit strong central nervous system stimulant effects. d-Amphetamine ((+)-alpha-methylphenetylamine) is the parent drug in this class to which all others are structurally related. In drug discovery, d-amphetamine is extensively used either for the exploration of novel mechanisms involving the catecholaminergic system, or for the validation of new behavioural animal models. Due to this extensive use of d-amphetamine in drug research and its interest in toxicologic–forensic investigation, a specific and high-throughput method, with minimal sample preparation, is necessary for routine analysis of d-amphetamine in biological samples. We propose here a sensitive, specific and high-throughput bioanalytical method for the quantitative determination of d-amphetamine in rat blood using MS3 scan mode on a hybrid triple quadrupole-linear ion trap mass spectrometer (LC–MS/MS/MS). Blood samples, following dilution with water, were prepared by fully automated protein precipitation with acetonitrile containing an internal standard. The chromatographic separation was achieved on a Waters XTerra C18 column (2.1 mm × 30 mm, 3.5 μm) using gradient elution at a flow rate of 1.0 mL/min over a 2 min run time. An Applied Biosystems API4000 QTRAP™ mass spectrometer equipped with turbo ion-spray ionization source was operated simultaneously in MS3 scan mode for the d-amphetamine and in multiple reaction monitoring (MRM) for the internal standard. The MS/MS/MS ion transition monitored was m/z 136.1 → 119.1 → 91.1 for the quantitation of d-amphetamine and for the internal standard (rolipram) the MS/MS ion transition monitored was m/z 276.1 → 208.2. The linear dynamic range was established over the concentration range 0.5–1000 ng/mL (r2 = 0.9991). The method was rugged and sensitive with a lower limit of quantification (LLOQ) of 0.5 ng/mL. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. This method was successfully applied to evaluate the pharmacokinetics of d-amphetamine in rat. On a more general extent, this work demonstrated that the selectivity of the fragmentation pathway (MS3) can be used as alternative approach to significantly improve detection capability in complex situation (e.g., small molecules in complex matrices) rather than increasing time for sample preparation and chromatographic separation.  相似文献   

10.
We developed a method using liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS/MS) with a selected reaction monitoring (SRM) mode for simultaneous quantitative analysis of glycosaminoglycans (GAGs). Using one-shot analysis with our MS/MS method, we demonstrated the simultaneous quantification of a total of 23 variously sulfated disaccharides of four GAG classes (8 chondroitin/dermatan sulfates, 1 hyaluronic acid, 12 heparan sulfates, and 2 keratan sulfates) with a sensitivity of less than 0.5 pmol within 20 min. We showed the differences in the composition of GAG classes and the sulfation patterns between porcine articular cartilage and yellow ligament. In addition to the internal disaccharides described above, some saccharides derived from the nonreducing terminal were detected simultaneously. The simultaneous quantification of both internal and nonreducing terminal saccharides could be useful to estimate the chain length of GAGs. This method would help to establish comprehensive “GAGomic” analysis of biological tissues.  相似文献   

11.
An improved method for determining levels of levosulpiride in human plasma using ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was developed and validated. The protein precipitation method was used for plasma sample preparation. Levosulpiride and an internal standard (IS) were isocratically separated on a UPLC BEH C18 column with a mobile phase of ammonium formate buffer (1 mM, adjusted to pH 3 with formic acid) and acetonitrile (60:40, v/v). MS/MS detection was performed by monitoring the parent → daughter pair of levosulpiride and the IS at m/z 342 → 112 and 329 → 256, respectively. The method was linear from 2.5 to 200 ng/mL and exhibited acceptable precision and percent recovery. The method was successfully demonstrated in pharmacokinetic and bioequivalence studies of two levosulpiride oral formulations administered to healthy volunteers. When compared to the previous LC–MS methods, the proposed method is faster, well-validated, and uses lesser plasma volume and a similar sensitivity. The use of UPLC allowed rapid and sensitive quantification of levosulpiride, making this method suitable for high-throughput clinical applications.  相似文献   

12.
A sensitive and specific liquid chromatography–electrospray ionization-mass spectrometry (LC–ESI-MS/MS) method has been developed and validated for the identification and quantification of clebopride in human plasma using itopride as an internal standard. The method involves a simple liquid–liquid extraction. The analytes were separated by isocratic gradient elution on a CAPCELL MG-III C18 (5 μm, 150 mm × 2.1 mm i.d.) column and analyzed in multiple reaction monitoring (MRM) mode with positive electrospray ionization (ESI) interface using the respective [M+H]+ ions, m/z 373.9 → m/z184.0 for clebopride, m/z 359.9 → m/z71.5 for itopride. The method was validated over the concentration range of 69.530–4450.0 pg/ml for clebopride. Within- and between-batch precision (RSD%) was all within 6.83% and accuracy ranged from −8.16 to 1.88%. The LLOQ was 69.530 pg/ml. The extraction recovery was on an average 77% for clebopride. The validated method was used to study the pharmacokinetics profile of clebopride in human plasma after oral administration of clebopride.  相似文献   

13.
6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) is an amino acid-specific derivatizing reagent that has been used for sensitive amino acid quantification by liquid chromatography–tandem quadrupole mass spectrometry (LC–MS/MS). In this study, we aimed to evaluate the ability of this method to measure the isotopic enrichment of amino acids and to determine the positional 15N enrichment of urea cycle amino acids (i.e., arginine, ornithine, and citrulline) and glutamine. The distribution of the M and M + 1 isotopomers of each natural AQC–amino acid was nearly identical to the theoretical distribution. The standard deviation of the (M + 1)/M ratio for each amino acid in repeated measurements was approximately 0.1%, and the ratios were stable regardless of the injected amounts. Linearity in the measurements of 15N enrichment was confirmed by measuring a series of 15N-labeled arginine standards. The positional 15N enrichment of urea cycle amino acids and glutamine was estimated from the isotopic distribution of unique fragment ions generated at different collision energies. This method was able to identify their positional 15N enrichment in the plasma of rats fed 15N-labeled glutamine. These results suggest the utility of LC–MS/MS detection of AQC–amino acids for the measurement of isotopic enrichment in 15N-labeled amino acids and indicate that this method is useful for the study of nitrogen metabolism in living organisms.  相似文献   

14.
A novel, sensitive and reliable liquid chromatography–tandem mass spectrometric (LC–MS/MS) method was developed and validated for the determination of belinostat (PXD101) in human plasma. Oxamflatin was used as the internal standard. Liquid–liquid extraction of the plasma sample was performed using tert-butyl methyl ether as the organic solvent. Chromatographic separation was achieved on a BDS Hypersil C18 column (2.1 mm × 100 mm, 5 μm) using gradient elution mode using 0.05% formic acid in water and 0.05% formic acid in acetonitrile as solvents A and B, respectively, 60/40. The run time was 6 min. The mass spectrometer was operated under a positive electrospray ionization condition and a multiple reaction monitoring mode. An excellent linear calibration was achieved in the range of 0.5–1000 ng/mL. An average recovery of belinostat for four quality controls was 72.6% and the recovery of the internal standard at 1000 ng/mL was 67.8%. The intra-day and inter-day precisions for belinostat were ≤8.0 and ≤10.3%, respectively, and their accuracy ranged from 100.2 to 106.7%. No significant matrix effect was identified. In analysis of patient samples, belinostat glucuronide was identified and baseline separated from belinostat. This well-validated assay has been applied for quantification of belinostat in plasma samples within 24 h after the start of infusion for Asian hepatocellular carcinoma patients in a dose escalation study.  相似文献   

15.
A simple offline LC–MS/MS method for the quantification of sitagliptin in human plasma is described. Samples are prepared using protein precipitation. Filtration of the supernatants through a Hybrid-SPE-PPT plate was found to be necessary to reduce ionization suppression caused by co-elution of phospholipids with sitagliptin. The sitagliptin and its stable isotope labeled internal standard (IS) were chromatographed under hydrophilic interaction chromatography conditions on a Waters Atlantis HILIC Silica column (2.1 mm × 50 mm, 3 μm) using a mobile phase of ACN/H2O (80/20, v/v) containing 10 mM NH4Ac (pH 4.7). The sample drying after protein precipitation due to high organic content in the sample is not necessary, because HILIC column was used. The analytes were detected with a tandem mass spectrometer employing a turbo ion spray (TIS) interface in positive ionization mode. The multiple reaction monitoring (MRM) transitions were m/z 408 → 235 for sitagliptin and m/z 412 → 239 for IS. The lower limit of quantitation (LLOQ) for this method is 1 ng/mL when 100 μL of plasma is processed. The linear calibration range is 1–1000 ng/mL for sitagliptin. Intra-day precision and accuracy were assessed based on the analysis of six sets of calibration standards prepared in six lots of human control plasma. Intra-day precision (RSD%, n = 6) ranged from 1.2% to 6.1% and the intra-day accuracy ranged from 97.6% to 103% of nominal values.  相似文献   

16.
Bacterial cell wall biosynthesis is the target of several antibiotics and is of interest as a target for new inhibitor development. The cytoplasmic steps of this pathway involve a series of uridine diphosphate (UDP)-linked peptidoglycan intermediates. Quantification of these intermediates is essential for studies of current agents targeting this pathway and for the development of new agents targeting this pathway. In this study, a liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for quantification of these intermediates in Staphylococcus aureus. To address the problem of poor retention of UDP-linked intermediates on reverse phase media, an ion-pairing (IP) approach using N,N-dimethylhexylamine was developed. MS/MS detection in negative mode was optimized for UDP-GlcNAc, UDP-MurNAc, UDP-MurNAc-l-Ala, UDP-MurNAc-l-Ala-d-Glu, UDP-MurNAc-l-Ala-d-Glu-l-Lys, and UDP-MurNAc-l-Ala-d-Glu-l-Lys-d-Ala-d-Ala. The lower limits of quantification (LLOQs) for these analytes were 1.8, 1.0, 0.8, 2.2, 0.6, and 0.5 pmol, respectively, which correspond to LLOQs of 6, 3, 3, 7, 2, and 2 nmol/g bacteria, respectively. This method was demonstrated for quantification of in vivo levels of these intermediates from S. aureus (0.3 mg dry weight analyzed) treated with fosfomycin, d-boroAla, d-cycloserine, and vancomycin. Metabolite accumulation is consistent with the known targets of these antibiotics and indicates potential regulatory loops within this pathway.  相似文献   

17.
A precise and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for simultaneous determination of vinpocetine (VP) and its primary metabolite, apovincaminic acid (AVA), in rat plasma was developed and validated. The analytes and the internal standard-dimenhydrinate were extracted from 50 μL aliquots of rat plasma via solid–liquid extraction. Chromatographic separation was achieved in a run time of 3.5 min on a C18 column under isocratic conditions. Detection of analytes and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The protonated precursor to product ion transitions monitored for VP, AVA and IS were m/z 351.4 → 280.2, 323.2 → 280.2 and 256.2 → 167.3 respectively. The method was fully validated for its sensitivity, selectivity, accuracy and precision, matrix effect, stability study and dilution integrity. A linear dynamic range of 0.5–500 ng/mL for both VP and AVA was evaluated with mean correlation coefficient (r) of 0.9970 and 0.9984 respectively. The precision of the assay (RSD%) was less than 8.55% at all concentrations levels for both VP and AVA. This method was successfully applied to a pharmacokinetic study of VP in rats after intravenous (1 mg/kg) and oral (1 mg/kg) administration.  相似文献   

18.
Perchlorate can competitively inhibit iodide uptake by the thyroid gland (TG) via the sodium/iodide symporter, consequently reducing the production of thyroid hormones (THs). Until recently, the effects of perchlorate on TH homeostasis are being examined through measurement of serum levels of TH, by immunoassay (IA)-based methods. IA methods are fast, but for TH analysis, they are compromised by the lack of adequate specificity. Therefore, selective and sensitive methods for the analysis of THs in TG are needed, for assessment of the effects of perchlorate on TH homeostasis. In this study, we developed a method for the analysis of six THs: l-thyroxine (T4), 3,3′,5-triiodo-l-thyronine (T3), 3,3′,5′-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (3,5-T2), 3,3′-diiodo-l-thyronine (3,3′-T2), and 3-iodo-l-thyronine (3-T1) in TG, using liquid chromatography (LC)–tandem mass spectrometry (MS/MS). TGs used in this study were from rats that had been placed on either iodide-deficient diet or iodide-sufficient diet, and that had either been provided with perchlorate in drinking water (10 mg/kg/day) or control water. TGs were extracted by pronase digestion and then analyzed by LC–MS/MS. The instrumental calibration range for each TH ranged from 1 to 200 ng/ml and showed a high linearity (r > 0.99). The method quantification limits (LOQs) were determined to be 0.25 ng/mg TG for 3-T1; 0.33 ng/mg TG for 3,3′- and 3,5-T2; and 0.52 ng/mg TG for rT3, T3, and T4. Rats were placed on an iodide-deficient or -sufficient diet for 2.5 months, and for the last 2 weeks of that period were provided either perchlorate (10 mg/kg/day) in drinking water or control water. Iodide deficiency and perchlorate administration both reduced TG stores of rT3, T3, and T4. In iodide-deficient rats, perchlorate exacerbated the reduction in levels of THs in TG. With the advances in analytical methodology, the use of LC–MS/MS for measurement of hormone levels in TG will allow more comprehensive evaluations of the hypothalamic-pituitary–thyroid axis.  相似文献   

19.
Haemoglobin adducts are highly valuable biomarkers of cumulative exposure to carcinogenic substances. We have developed and applied an analytical method for the simultaneous quantification of five haemoglobin adducts of important occupational and environmental carcinogens. The N-terminal adducts were determined with gas chromatography as pentafluorophenylthiohydantoine derivatives according to the modified Edman-procedure and subsequent acetonization of the glycidamide adduct N-(R,S)-2-hydroxy-2-carbamoylethylvaline (GAVal). The use of self-synthesized labelled internal standards in combination with tandem mass spectrometry using negative chemical ionisation guarantees both high accuracy and sensitivity of our determination. The limit of detection for N-2-hydroxyethylvaline (HEVal), N-(R,S)-2-hydroxypropylvaline (HPVal), N-2-carbamoylethylvaline (AAVal) and N-(R,S)-2-hydroxy-2-carbamoylethylvaline (GAVal) was 2 pmol/g globin, for N-2-cyanoethylvaline (CEVal) it was determined as 0.5 pmol/g globin, which was sufficient to determine the background levels of these adducts in the non-smoking general population. The between-day-precision for all analytes using a human blood sample as quality control material ranged from 4.7 to 12.3%. We investigated blood samples of a small group (n = 104) of non-smoking persons of the general population for the background levels of these haemoglobin adducts. The median values for HEVal, HPVal, CEVal, AAVal and GAVal in a group of 92 non-smoking persons were 18.1, 4.1, <0.5, 29.9 and 35.2 pmol/g globin, respectively. The adduct levels in 12 persons reporting exposure to passive smoke at home were similar for most adducts with median values of 17.2, 4.1, 1.0, 24.9 and 29.7 pmol/g globin for HEVal, HPVal, CEVal, AAVal and GAVal, respectively. Our results point to an elevated uptake of acrylonitrile caused by passive smoking as indicated by higher levels of the corresponding haemoglobin adduct CEVal.  相似文献   

20.
A rapid and specific LC–MS/MS based bioanalytical method was developed and validated for the determination of 18-(p-iodophenyl)octadecyl phosphocholine (CLR1401), a novel phosphocholine drug candidate, in rat plasma. The optimal chromatographic behavior of CLR1401 was achieved on a Kromasil silica column (50 mm × 3 mm, 5 μm) under hydrophilic interaction chromatography. The total LC analysis time per injection was 2.8 min with a flow rate of 1.5 mL/min under gradient elution. Liquid–liquid extraction in a 96-well format using ethyl acetate was developed and applied for method validation and sample analysis. The method validation was conducted over the curve range of 2.00–1000 ng/mL using 0.0500 mL of plasma sample. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels showed ≤ 5.9% relative standard deviation (RSD) and −10.8 to −1.4% relative error (RE). The method was successfully applied to determine the toxicokinetics of CLR1401 in rats from three dose groups of 0.4, 4.0, and 10.0 mg/kg/day via intravenous administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号