首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
We have developed and validated a sensitive liquid chromatography–electrospray ionization-mass spectrometric (LC–ESI-MS) method for the quantification of verticinone, a major active constituent from Fritillaria hupehensis Hsiao et KC Hsia., in rat plasma. Verticinone and the internal standard (IS), hupehenine, were extracted from plasma samples by a simple liquid–liquid extraction with ethyl acetate after being alkalified by 1 M ammonia hydroxide. Chromatographic separation was achieved on a C18 column using a gradient elution program with methanol and water as the mobile phase. The detection was performed by selected ion monitoring (SIM) mode via positive electrospray ionization (ESI) interface. The lower limit of quantification (LLOQ) was 0.1 ng/mL. The calibration curves were linear (r2 > 0.998) over the concentration range of 0.1–200 ng/mL. Within- and between-run precision was less than 6.5% and accuracy was within ±10.7%. The validated method was applied to the pharmacokinetic study of verticinone in rats after a single oral administration of 1 mg/kg.  相似文献   

2.
A selective, rapid and sensitive hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC–MS/MS) method was developed for the first time to determine adefovir in human plasma and applied to a pharmacokinetic study. Plasma samples were prepared by protein precipitation with methanol followed by a further cleaning using dichloromethane. The chromatographic separation was carried out on an ACQUITY UPLC™ BEH HILIC column with the mobile phase of methanol–water–formic acid (85:15:0.2, v/v/v). The detection was performed on a triple-quadrupole tandem mass spectrometer with multiple reaction monitoring (MRM) mode via electrospray ionization (ESI) source. The method was rapid with a run time of 3 min per sample. The linear calibration curves were obtained in the concentration range of 1.02–102 ng/mL (r2 ≥ 0.99) with the lower limit of quantification (LLOQ) of 1.02 ng/mL. The intra- and inter-day precision (relative standard deviation, R.S.D.) values were below 12% and the accuracy (relative error, R.E.) was from 0.6% to 3.2% at all quality control (QC) levels. The method was applicable to clinical pharmacokinetic study of adefovir in healthy volunteers after oral administration of adefovir dipivoxil tablet.  相似文献   

3.
Two modes of high-speed counter-current chromatography (HSCCC) were successfully applied to the separation of alkaloids from crude extract of Nelumbo nucifera leaves. The conventional HSCCC separations were performed with a two-phase solvent system composed of tetrachloromethane–CHCl3–methanol–0.1 M HCl at a volume ratio of 1:3:3:2 (v/v/v/v), and 120 mg crude extract could be successfully separated. pH-Zone-refining CCC was performed with a two-phase solvent system composed of petroleum ether (60–90 °C)–ethyl acetate–methanol–water (5:5:2:8, v/v/v/v) where triethylamine (10 mM) was added to the upper organic stationary phase as a retainer and hydrochloric acid (5 mM) to the aqueous mobile phase as an eluent. From 4.0 g of the crude extract, 120 mg N-nornuciferine, 1020 mg nuciferine and 96 mg roemerine were obtained in a single run each with a purity of over 98% as determined by HPLC. The structures of the isolated compounds were identified by ESI-MS, 1H NMR and 13C NMR.  相似文献   

4.
A simple and rapid high-performance liquid-chromatography method is presented that permits quantification of caffeine in colloidal fat emulsions proposed as new ‘biorelevant’ dissolution media (Intralipid™ and various milks). Using a mobile phase of 0.1 M sodium acetate (pH 4.0) and acetonitrile (89.5:10.5, v/v) at 1 ml min−1, the drug and internal standard (7-β-hydroxyethyltheophylline) were eluted within 8 min. Caffeine extraction was undertaken by protein precipitation in ice-cold 12% (w/v) trichloroacetic acid and centrifugation at 10,000 rpm for 15 min. This simple extraction method generated caffeine recovery values (corrected for % fat content) of 75.4 ± 1.4–100.6 ± 5.5%. The limit of detection was within the range 0.25–0.4 μg ml−1 and linearity was demonstrated in each medium up to 125 μg ml−1. Precision was <11.5% RSD and intra- and inter-day accuracy was 93.4–109.3%. The validated method was applied to in vitro USP dissolution tests in milk which compared the kinetics of caffeine release from (i) extended release matrices containing hydroxypropyl methylcellulose (HPMC) and (ii) an immediate release commercial analgesic tablet. Good reproducibility was obtained in both extended and immediate release dissolution tests. The method provides high-throughput quantification of this common drug in fat emulsions used as biorelevant dissolution media.  相似文献   

5.
The purpose of this study was to develop and validate an ultra performance liquid chromatography–mass spectrometry (UPLC/MS) method to investigate the hepatic oxidative metabolism of 2,2′,4,4′,5-pentabromodiphenyl ether (BDE-99), a widely used flame retardant and ubiquitous environmental contaminant. Hydroxylated metabolites were extracted using liquid-to-liquid extraction, resolved on a C18 column with gradient elution and detected by mass spectrometry in single ion recording mode using electrospray negative ionization. The assay was validated for linearity, accuracy, precision, limit of quantification, range and recovery. Calibration curves were linear (R2 ≥ 0.98) over a concentration range of 0.010–1.0 μM for 4-OH-2,2′,3,4′,5-pentabromodiphenyl ether (4-OH-BDE-90), 5′-OH-2,2′,4,4′,5-pentabromodiphenyl ether (5′-OH-BDE-99) and 6′-OH-2,2′,4,4′,5-pentabromodiphenyl ether (6′-OH-BDE-99), and a concentration range of 0.0625–12.5 μM for 2,4,5-tribromophenol (2,4,5-TBP). Inter- and intra-day accuracy values ranged from −2.0% to 6.0% and from −7.7% to 7.3%, respectively, and inter- and intra-day precision values ranged from 2.0% to 8.5% and from 2.2% to 8.6% (n = 6), respectively. The limits of quantification were 0.010 μM for 4-OH-BDE-90, 5′-OH-BDE-99 and 6′-OH-BDE-99, and 0.0625 μM for 2,4,5-TBP. Recovery values ranged between 85 and 100% for the four analytes. The validated analytical method was applied to identify and quantify hydroxy BDE-99 metabolites formed in vitro. Incubation of BDE-99 with rat liver microsomes yielded 4-OH-BDE-90 and 6′-OH-BDE-99 as major metabolites and 5′-OH-BDE-99 and 2,4,5-TBP as minor metabolites. To our knowledge, this is the first validated UPLC/MS method to quantify hydroxylated metabolites of PBDEs without the need of derivatization.  相似文献   

6.
A capillary electrophoresis method was developed and validated for the first time for the analysis of clopidogrel and its carboxylic acid metabolite. Prior to method optimization, the pH dependence of effective mobility of both compounds was determined in order to define the initial pH of the running buffer. The optimized method demonstrated to be selective, and linear in the concentration range of 2–100 μM for both compounds. The method limits of detection and quantification were, respectively, 1.2 and 3.7 μM for clopidogrel and 1.1 and 3.2 μM for the carboxylic acid metabolite. Moreover, method validation demonstrated acceptable results for method repeatability (RSD < 7%), intermediate precision (RSD < 7%) and accuracy (85–96%) and is suitable for the quantitative analysis of clopidogrel and its metabolite in serum samples. The validated method was also applied to the determination of the kinetic parameters of the enzymatic hydrolysis of clopidogrel. An apparent Km of 145 ± 30 μM and Vmax of 0.4, 1.5 and 3.4 μM/min, respectively for the enzyme concentrations 1.0, 2.0 and 4.0 U/ml, were obtained.  相似文献   

7.
A highly sensitive HPLC–ESI-MS method has been developed and validated for the quantification of ginkgolic acid (15:1) in a small quantity of rat plasma (50 μL) using its homologous compound ginkgolic acid (17:1) as an internal standard. GA (15:1) and GA (17:1) were extracted from biological matrix by direct protein precipitation with 5-fold volume of methanol and separated on an Elite hypersil BDS C18 column (2.1 × 100 mm, 3 μm), eluted with acetonitrile:water (92:8, v/v, containing 0.3% glacial acetic acid). Linear range was 8–1000 ng/mL with the square regression coefficient (r2) of 0.996. The lowest concentration (8 ng/mL) in the calibration curve was estimated as LLOQ with both deviation of accuracy and RSD of precision <20% (n = 6). The intra- and inter-day precision ranged from 3.6% to 9.9%, and the intra- and inter-day accuracy was between 89.9% and 101.3%. This method was successfully applied to study pharmacokinetics of GA (15:1) in rats after oral administration at a dose of 10 mg/kg. GA (15:1) pharmacokinetic parameters Cmax, Tmax, t1/2, AUC0–12h are 1552.9 ± 241.0 ng/mL, 0.9 ± 0.7 h, 5.5 ± 2.6 h, 3356.0 ± 795.3 ng h/mL, respectively.  相似文献   

8.
A novel amperometric biosensor for xanthine was developed based on covalent immobilization of crude xanthine oxidase (XOD) extracted from bovine milk onto a hybrid nanocomposite film via glutaraldehyde. Toward the preparation of the film, a stable colloids solution of core–shell Fe3O4/polyaniline nanoparticles (PANI/Fe3O4 NPs) was dispersed in solution containing chitosan (CHT) and H2PtCl6 and electrodeposited over the surface of a carbon paste electrode (CPE) in one step. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used for characterization of the electrode surface. The developed biosensor (XOD/CHT/Pt NPs/PANI/Fe3O4/CPE) was employed for determination of xanthine based on amperometric detection of hydrogen peroxide (H2O2) reduction at –0.35 V (vs. Ag/AgCl). The biosensor exhibited a fast response time to xanthine within 8 s and a linear working concentration range from 0.2 to 36.0 μM (R2 = 0.997) with a detection limit of 0.1 μM (signal/noise [S/N] = 3). The sensitivity of the biosensor was 13.58 μA μM−1 cm−2. The apparent Michaelis–Menten (Km) value for xanthine was found to be 4.7 μM. The fabricated biosensor was successfully applied for measurement of fish and chicken meat freshness, which was in agreement with the standard method at the 95% confidence level.  相似文献   

9.
A simple offline LC–MS/MS method for the quantification of sitagliptin in human plasma is described. Samples are prepared using protein precipitation. Filtration of the supernatants through a Hybrid-SPE-PPT plate was found to be necessary to reduce ionization suppression caused by co-elution of phospholipids with sitagliptin. The sitagliptin and its stable isotope labeled internal standard (IS) were chromatographed under hydrophilic interaction chromatography conditions on a Waters Atlantis HILIC Silica column (2.1 mm × 50 mm, 3 μm) using a mobile phase of ACN/H2O (80/20, v/v) containing 10 mM NH4Ac (pH 4.7). The sample drying after protein precipitation due to high organic content in the sample is not necessary, because HILIC column was used. The analytes were detected with a tandem mass spectrometer employing a turbo ion spray (TIS) interface in positive ionization mode. The multiple reaction monitoring (MRM) transitions were m/z 408 → 235 for sitagliptin and m/z 412 → 239 for IS. The lower limit of quantitation (LLOQ) for this method is 1 ng/mL when 100 μL of plasma is processed. The linear calibration range is 1–1000 ng/mL for sitagliptin. Intra-day precision and accuracy were assessed based on the analysis of six sets of calibration standards prepared in six lots of human control plasma. Intra-day precision (RSD%, n = 6) ranged from 1.2% to 6.1% and the intra-day accuracy ranged from 97.6% to 103% of nominal values.  相似文献   

10.
A wide variety of sulfur metabolites play important roles in plant functions. We have developed a precise and sensitive method for the simultaneous measurement of several sulfur metabolites based on liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) and 34S metabolic labeling of sulfur-containing metabolites in Arabidopsis thaliana seedlings. However, some sulfur metabolites were unstable during the extraction procedure. Our proposed method does not allow for the detection of the important sulfur metabolite homocysteine because of its instability during sample extraction. Stable isotope-labeled sulfur metabolites of A. thaliana shoot were extracted and utilized as internal standards for quantification of sulfur metabolites with LC–MS/MS using S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), glutathione (GSH), and glutathione disulfide (GSSG) as example metabolites. These metabolites were detected using electrospray ionization in positive mode. Standard curves were linear (r2 > 0.99) over a range of concentrations (SAM 0.01–2.0 μM, SAH 0.002–0.10 μM, Met 0.05–4.0 μM, GSH 0.17–20.0 μM, GSSG 0.07–20.0 μM), with limits of detection for SAM, SAH, Met, GSH, and GSSG of 0.83, 0.67, 10, 0.56, and 1.1 nM, respectively; and the within-run and between-run coefficients of variation based on quality control samples were less than 8%.  相似文献   

11.
Two Gram-staining-negative, moderately halophilic bacteria, strains M1-18T and L1-16, were isolated from a saltern located in Huelva (Spain). They were motile, strictly aerobic rods, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–10% [w/v] NaCl), between pH 4.0 and 9.0 (optimal at pH 6.0–7.0) and at temperatures between 15 and 40 °C (optimal at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed the higher similarity values with Chromohalobacter israelensis ATCC 43985T (95.2–94.8%) and Chromohalobacter salexigens DSM 3043T (95.0–94.9%), and similarity values lower than 94.6% with other species of the genera Chromohalobacter, Kushneria, Cobetia or Halomonas. Multilocus sequence analysis (MLSA) based on the partial sequences of atpA, rpoD and secA housekeeping genes indicated that the new isolates formed an independent and monophyletic branch that was related to the peripheral genera of the family Halomonadaceae, Halotalea, Carnimonas and Zymobacter, supporting their placement as a new genus of the Halomonadaceae. The DNA–DNA hybridization between both strains was 82%, whereas the values between strain M1-18T and the most closely related species of Chromohalobacter and Kushneria were equal or lower to 48%. The major cellular fatty acids were C18:1ω7c/C18:1ω6c, C16:0, and C16:1ω7c/C16:1ω6c, a profile that differentiate this new taxon from species of the related genera. We propose the placement of both strains as a novel genus and species, within the family Halomonadaceae, with the name Larsenia salina gen. nov., sp. nov. The type strain is M1-18T (= CCM 8464 = CECT 8192T = IBRC-M 10767T = LMG 27461T).  相似文献   

12.
An improved method for determining levels of levosulpiride in human plasma using ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was developed and validated. The protein precipitation method was used for plasma sample preparation. Levosulpiride and an internal standard (IS) were isocratically separated on a UPLC BEH C18 column with a mobile phase of ammonium formate buffer (1 mM, adjusted to pH 3 with formic acid) and acetonitrile (60:40, v/v). MS/MS detection was performed by monitoring the parent → daughter pair of levosulpiride and the IS at m/z 342 → 112 and 329 → 256, respectively. The method was linear from 2.5 to 200 ng/mL and exhibited acceptable precision and percent recovery. The method was successfully demonstrated in pharmacokinetic and bioequivalence studies of two levosulpiride oral formulations administered to healthy volunteers. When compared to the previous LC–MS methods, the proposed method is faster, well-validated, and uses lesser plasma volume and a similar sensitivity. The use of UPLC allowed rapid and sensitive quantification of levosulpiride, making this method suitable for high-throughput clinical applications.  相似文献   

13.
In the present study, a simple and sensitive high performance liquid chromatography with fluorescence detection (HPLC-FD) method was developed to determine TJ0711 hydrochloride, a novel α- and β-receptor blocker. TJ0711 hydrochloride and verapamil hydrochloride (the internal standard) were separated on Knauer Eurospher C18 (250 mm × 4.0 mm i.d., 5 μm) column at 50 °C. The mobile phase was methanol:perchloric acid (12 nM, aq) (56:44, v:v), with a flow rate of 1.0 mL/min. The wavelengths of FD were set at 246 nm for excitation and 300 nm for emission. For plasma samples of rats, the analytes were extracted with acetic ether from alkalinized plasma, and then back-extracted into 10 mM dilute sulfuric acid. The linearity was over a concentration range of 20–10,000 ng/mL. The intra- and inter-day precisions referred by relative standard deviation were less than 2.0% and 4.3%, respectively. The mean analytical recoveries of TJ0711 hydrochloride at different concentrations (50, 1000 and 8000 ng/mL) ranged from 88.3% to 92.9%. The lower limit of quantification (LLOQ) was 20 ng/mL. Finally, this method was successfully applied to the estimation of pharmacokinetic parameters of TJ0711 hydrochloride after intravenous doses of 4, 8 and 16 mg/kg in rats.  相似文献   

14.
A simple and sensitive method for quantification of nanomolar copper with a detection limit of 1.2 × 10−10 M and a linear range from 10−9 to 10−8 M is reported. For the most useful analytical concentration of quantum dots, 1160 μg/ml, a 1/Ksv value of 11 μM Cu2+ was determined. The method is based on the interaction of Cu2+ with glutathione-capped CdTe quantum dots (CdTe–GSH QDs) synthesized by a simple and economic biomimetic method. Green CdTe–GSH QDs displayed the best performance in copper quantification when QDs of different sizes/colors were tested. Cu2+ quantification is highly selective given that no significant interference of QDs with 19 ions was observed. No significant effects on Cu2+ quantification were determined when different reaction matrices such as distilled water, tap water, and different bacterial growth media were tested. The method was used to determine copper uptake kinetics on Escherichia coli cultures. QD-based quantification of copper on bacterial supernatants was compared with atomic absorption spectroscopy as a means of confirming the accuracy of the reported method. The mechanism of Cu2+-mediated QD fluorescence quenching was associated with nanoparticle decomposition.  相似文献   

15.

Background and aims

Non-alcoholic fatty liver disease (NAFLD) and elevated alanine transaminase (ALT) levels are common in obese Hispanic adults and children. Recently, a PNPLA3 gene variant (I148M) was strongly associated with NAFLD and higher ALT levels in obese adults, including Hispanics. The aims of this study were to estimate the frequency of elevated ALT levels, and to address the influence of obesity and PNPLA3/I148M on ALT levels in a general population sample of Mexican school-aged children.

Methods

A total of 1037 non-related Mexican children aged 6 to 12 years were genotyped for the I148M variant. Anthropometric, clinical and metabolic parameters were collected from all participants.

Results

Elevated ALT levels (> 35 U/L) were more frequent in obese (26.9%) and overweight (9.3%) than in normal weight children (2.2%). The M148M genotype was significantly associated with elevated ALT levels in this population (OR = 3.7, 95% CI 2.3–5.9; P = 3.7 × 10− 8), and children carrying the M148M genotype showed significantly lower HDL cholesterol levels and BMI z-core (P = 0.036 and 0.015, respectively). On stratifying by BMI percentile, this genotype conferred a much greater risk of elevated ALT levels in normal weight (OR = 19.9, 95% CI 2.5–157.7; P = 0.005) than overweight and obese children (OR = 3.4, 95% CI 1.3–8.9; P = 0.014 and OR = 3.1, 95% CI 1.7–5.5; P = 1.4 x10− 4, respectively).

Conclusions

The I148M PNPLA3 variant is strongly associated with elevated ALT levels in normal weight and overweight/obese Mexican children. Thus, the M148M genotype may be considered as an important risk factor for liver damage in this population.  相似文献   

16.
A method for the detection of trehalose-6-phosphate (T6P) in tissue of the model plant Arabidopsis thaliana is presented. Liquid-liquid extraction (LLE) and mixed mode solid-phase extraction (SPE) were used for sample pretreatment followed by anion exchange chromatography (AEC) coupled with electrospray ionization mass spectrometry (MS) for highly selective quantitative analysis. LLE of plant material was performed with chloroform/acetonitrile/water (3:7:16, v/v/v) followed by SPE with Oasis MAX material, which significantly reduced the complexity of the extracts. On-line coupling of MS with gradient AEC using a sodium hydroxide eluent was accomplished with a postcolumn ion suppressor. The method allows specific quantification of T6P with good linearity for spiked plant extracts, from 80 nM to 1.3 μM (r2 > 0.98). The limit of detection in plant extracts was 40 nM. The recovery of the method was above 80% for relevant T6P levels. The method was applied to the determination of T6P in seedlings from four mutant A. thaliana lines (TRR1-4) resisting growth arrest caused by external supply of trehalose. Results reveal that T6P accumulation differed substantially in the four mutant lines and wild type (WT). It is concluded that the mutants circumvent the growth arrest observed in WT seedlings on 100 mM trehalose by different mechanisms.  相似文献   

17.
A highly sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of forsythiaside in rat plasma using epicatechin as internal standard. The analytes were extracted by solid-phase extraction and chromatographied on a C18 column eluted with a gradient mobile phase of acetonitrile and water both containing 0.2% formic acid. The detection was performed by negative ion electrospray ionization in multiple reaction monitoring mode, monitoring the transitions m/z 623 → 161 and m/z 289 → 109 for forsythiaside and epicatechin, respectively. The assay was linear over the concentration ranges of 2.0–50.0 and 50.0–5000.0 ng/mL with limits of detection and quantification of 0.2 and 1.0 ng/mL, respectively. The precision was <10.8% and the accuracy was >91.9%, and extraction recovery ranged from 81.3% to 85.0%. This method was successfully applied to a pharmacokinetic study of forsythiaside in rats after intravenous (20 mg/kg) and oral (100 mg/kg) administration, and the result showed that the compound was poorly absorbed with an absolute bioavailability being approximately 0.5%.  相似文献   

18.
A method for the quantitative analysis of cudratricusxanthone B (CXB) in rat plasma by high performance liquid chromatography–electrospray ionization-tandem mass spectrometry (HPLC–ESI-MS/MS) has been developed and validated. The method involved liquid–liquid extraction from plasma, simple chromatographic conditions on a Venusil XBP-PH C18 column with the mobile phase of 0.5% formic acid in methanol, and mass spectrometric detection using an API-3000 instrument. Multiple reaction monitoring (MRM) mode was used to monitor precursor/product ion transitions of m/z 397.1/285.0 for CXB and m/z 381.6/269.2 for the internal standard (I.S.) cudraxanthone H. The standard curves were linear over the concentration range of 1–500 ng/mL for CXB in rat plasma. The intra- and inter-batch accuracy for CXB at four concentrations was 89.4–99.5% and 89.4–100.8%, respectively. The RSDs were less than 7.92%. The lower limit of quantification for CXB was 1.0 ng/mL using 100 μL of plasma. The average extraction recoveries of CXB ranged from 80.1 to 95.4% at the concentrations of 2, 50 and 500 ng/mL, respectively. This method was successfully applied to the pharmacokinetic study after an intravenous administration of CXB in male Sprague–Dawley (SD) rats.  相似文献   

19.
Zhao S  Wang J  Ye F  Liu YM 《Analytical biochemistry》2008,378(2):127-131
A simple and sensitive method based on capillary electrophoresis (CE) with chemiluminescence (CL) detection has been developed for the determination of uric acid (UA). The sensitive detection was based on the enhancement effect of UA on the CL reaction between luminol and potassium ferricyanide (K3[Fe(CN)6]) in alkaline solution. A laboratory-built reaction flow cell and a photon counter were deployed for the CL detection. Experimental conditions for CL detection were studied in detail to achieve a maximum assay sensitivity. Optimal conditions were found to be 1.0 × 10−4 M luminol added to the CE running buffer and 1.0 × 10−4 M K3[Fe(CN)6] in 0.2 M NaOH solution introduced postcolumn. The proposed CE-CL assay showed good repeatability (relative standard deviation [RSD] = 3.5%, n = 11) and a detection limit of 3.5 × 10−7 M UA (signal/noise ratio [S/N] = 3). A linear calibration curve ranging from 6.0 × 10−7 to 3.0 × 10−5 M UA was obtained. The method was evaluated by quantifying UA in human urine and serum samples with satisfactory assay results.  相似文献   

20.
In present study, an HPLC method coupled with photodiode array detector (HPLC-PDA) was established for determination and pharmacokinetics of gastrodin (GAS) in human plasma after an oral administration of GAS capsule. In the method, ethanol and dichloromethane were respectively used for deproteinization and purification during the sample preparation procedure. Separation of GAS was achieved on an AichromBond-AQ C18 column (5 μm, 150 mm × 4.6 mm) with the mobile phase of methanol–0.1% phosphoric acid solution (2:98, v/v) at a flow rate of 0.8 ml/min. The wavelength was set at 220 nm and the injection volume was 20 μl. Under the conditions, the calibration curve was linear within the concentration range of 50–4000 ng/ml with the correlation coefficient (r) of 0.99554 (weight = 1/X2) and the lower limit of quantification (LLOQ) was 50 ng/ml. The inter- and intra-day precisions were less than 11% and the accuracies (%) were within the range of 95.55–103.78%. The extraction recoveries were over 65% with RSDs less than 5.50%. The GAS was proved to be stable under tested conditions. Thus, the method was valid enough to be applied for pharmacokinetic study of GAS in human plasma. The pharmacokinetic parameters of GAS in human plasma after an oral administration of 200 mg GAS capsule were described as: Cmax, 1484.55 ± 285.05 ng/ml; Tmax, 0.81 ± 0.16 h; t1/2α, 3.78 ± 2.33 h; t1/2β, 6.06 ± 3.20 h; t1/2Ka, 0.18 ± 0.53 h; K12, 0.18 ± 0.41/h; K21, 0.20 ± 0.16/h; K10, 4.11 ± 15.81/h; V1/F, 180.35 ± 89.44 L; CL/F, 62.50 ± 140.03 l/h; AUC0→t, 5619.41 ± 1972.88 (ng/ml) h; and AUC0→∞, 7210.26 ± 3472.74 (ng/ml) h, respectively. These will be useful for the clinical application of GAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号