首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao S  Wang J  Ye F  Liu YM 《Analytical biochemistry》2008,378(2):127-131
A simple and sensitive method based on capillary electrophoresis (CE) with chemiluminescence (CL) detection has been developed for the determination of uric acid (UA). The sensitive detection was based on the enhancement effect of UA on the CL reaction between luminol and potassium ferricyanide (K3[Fe(CN)6]) in alkaline solution. A laboratory-built reaction flow cell and a photon counter were deployed for the CL detection. Experimental conditions for CL detection were studied in detail to achieve a maximum assay sensitivity. Optimal conditions were found to be 1.0 × 10−4 M luminol added to the CE running buffer and 1.0 × 10−4 M K3[Fe(CN)6] in 0.2 M NaOH solution introduced postcolumn. The proposed CE-CL assay showed good repeatability (relative standard deviation [RSD] = 3.5%, n = 11) and a detection limit of 3.5 × 10−7 M UA (signal/noise ratio [S/N] = 3). A linear calibration curve ranging from 6.0 × 10−7 to 3.0 × 10−5 M UA was obtained. The method was evaluated by quantifying UA in human urine and serum samples with satisfactory assay results.  相似文献   

2.
A novel capillary electrophoresis (CE) with chemiluminescence (CL) detection method for the determination of mitoxantrone (MTX) has been developed, which based on the CL reaction of potassium ferricyanide with luminol in sodium hydroxide medium sensitized by MTX. Under optimum analytical conditions, MTX is determined over the range of 7.0 × 10−8–1.0 × 10−6 M with a detection limit of 1.0 × 10−8 M. The relative standard deviation (RSD) was 3.7%, 2.6% and 3.0% for 7.0 × 10−8, 5.0 × 10−7 and 1.0 × 10−6 M MTX (n = 11), respectively. In laboratory-built CE–CL apparatus, the proposed method has been applied to determination of MTX in commercial drug and spiked in human urine and plasma with satisfactory results.  相似文献   

3.
A simple, rapid and sensitive procedure using capillary zone electrophoresis (CZE) to measure methotrexate, folinic acid and folic acid in human urine has been developed and validated. Optimum separation of methotrexate, folinic acid and folic acid was obtained on a 60 cm x 75 microm capillary using a 15 mM phosphate buffer solution (pH 12.0), temperature and voltage 20 degrees C and 25 kV, respectively and hydrodynamic injection. Under these conditions the analysis takes approximately 9.0 min. Good results were obtained for different aspects including stability of the solutions, linearity, accuracy and precision. Before CZE determination, the urine samples were purified and enriched by means of a solid phase extraction step with a preconditioned C(18) cartridge and eluting the compound with a mixture 1:1 of methanol:water. A linear response over the urine concentration range 1.0-6.0 mgL(-1) for MTX and 0.5-6.0 mgL(-1) for folinic acid and folic acid was observed. Detection limits for the three compound in urine were 0.35 mgL(-1). CZE was shown to be a good method with regard to simplicity, satisfactory precision, and sensitivity.  相似文献   

4.
A capillary electrophoresis method was developed and validated for the first time for the analysis of clopidogrel and its carboxylic acid metabolite. Prior to method optimization, the pH dependence of effective mobility of both compounds was determined in order to define the initial pH of the running buffer. The optimized method demonstrated to be selective, and linear in the concentration range of 2–100 μM for both compounds. The method limits of detection and quantification were, respectively, 1.2 and 3.7 μM for clopidogrel and 1.1 and 3.2 μM for the carboxylic acid metabolite. Moreover, method validation demonstrated acceptable results for method repeatability (RSD < 7%), intermediate precision (RSD < 7%) and accuracy (85–96%) and is suitable for the quantitative analysis of clopidogrel and its metabolite in serum samples. The validated method was also applied to the determination of the kinetic parameters of the enzymatic hydrolysis of clopidogrel. An apparent Km of 145 ± 30 μM and Vmax of 0.4, 1.5 and 3.4 μM/min, respectively for the enzyme concentrations 1.0, 2.0 and 4.0 U/ml, were obtained.  相似文献   

5.
The acidic oligosaccharides of human milk are predominantly sialyloligosaccharides. Pathogens that bind sialic acid-containing glycans on their host mucosal surfaces may be inhibited by human milk sialyloligosaccharides, but testing this hypothesis requires their reliable quantification in milk. Sialyloligosaccharides have been quantified by anion exchange high-performance liquid chromatography (HPLC), reverse- or normal-phase HPLC, and capillary electrophoresis (CE) of fluorescent derivatives; in milk, these oligosaccharides have been analyzed by high pH anion exchange chromatography with pulsed amperometric detection and, in our laboratory, by CE with detection at 205nm. The novel method described here uses a running buffer of aqueous 200mM NaH2PO4 (pH 7.05) containing 100mM sodium dodecyl sulfate (SDS) mixed with 45% (v/v) methanol to baseline resolve 5 oligosaccharides and separate all 12. This allows automated simultaneous quantification of the 12 major sialyloligosaccharides of human milk in a single 35-min run. This method revealed differences in sialyloligosaccharide concentrations between less and more mature milk from the same donors. Individual donors also varied in expression of sialyloligosaccharides in their milk. Thus, the facile quantification of sialyloligosaccharides by this method is suitable for measuring variation in expression of specific sialyloligosaccharides in milk and their relationship to decreased risk of specific diseases in infants.  相似文献   

6.
In this paper we propose a new fast free zone capillary electrophoresis method for the simultaneous determination of ascorbic acid (AA) and uric acid (UA) in human plasma. We investigated the effect of analytical parameters, such as concentration and pH of borate running buffer, cartridge temperature, and sample treatment, on resolution, migration times, corrected peak areas, and efficiency. A good separation was achieved using a 60.2-cmx75-microm uncoated silica capillary and 100 mmol/L sodium borate buffer, pH 8, when metaphosphoric acid was employed as protein precipitant, in less than 4 min. These conditions gave a good reproducibility of migration times (CV 0.35 and 0.34%) and peak areas (CV 3.2 and 3.1%) for ascorbate and urate, respectively. The limit of detection was 0.5mg/L for both analytes when the detection was performed at 254 nm for AA and at 292 nm for UA. We compared the present method with a validated capillary electrophoresis assay by measuring plasma urate and ascorbate in 32 normal subjects and the obtained data were analyzed by the Passing and Bablok regression.  相似文献   

7.
We report a case study of characterization of a non-enzymatically glycated IgG1 using reducing capillary electrophoresis sodium dodecyl sulfate (CE–SDS) and mass spectrometry (MS). Glycation was found to occur nonspecifically at multiple sites in both the light and heavy chains. The glycated light and heavy chains result in wider peaks eluting late in the reducing CE–SDS profile; in particular, the glycated light chain behaved as a shoulder peak detected by either ultraviolet (UV) or laser-induced fluorescence (LIF) signals. The glycated species can be enriched by boronate affinity chromatography. Analyzing the enriched samples by reversed phase high-performance liquid chromatography in line with time-of-flight MS (RP–HPLC–TOF/MS) revealed adducts of +162 and +324 Da to both the light and heavy chains, suggesting the presence of multiple glycation sites. Tryptic peptide mapping and tandem mass sequencing were used to identify two glycation sites on each of the light and heavy chains.  相似文献   

8.
Yu Q  Zhao S  Ye F  Li S 《Analytical biochemistry》2007,369(2):187-191
A new analytical method based on capillary electrophoresis (CE) separation and optical fiber light-emitting diode (LED)-induced fluorescence detection has been developed for the determination of octopamine. Naphthalene-2,3-dicarboxaldehyde (NDA) was used for precolumn derivatization of octopamine. The separation and determination of the derivative was performed using a laboratory-built CE system with an optical fiber LED-induced fluorescence detector. Optimal separation was obtained at 20 kV using a background electrolyte solution consisting of 25 mM sodium borate (pH 9.2). High sensitivity detection was achieved by the optical fiber LED-induced fluorescence detection using a purple LED as the excitation source. The limit of detection (signal/noise=3) for octopamine was 5.0 x 10(-9)M. A calibration curve ranging from 1.0 x 10(-8) to 5.0 x 10(-7)M was shown to be linear. Using this method, the levels of octopamine in human plasma from healthy donors were determined.  相似文献   

9.
It was found that isoniazid (ISO) or p‐aminosalicylic acid (PAS) could enhance the chemiluminescence (CL) emission from Cu (II)‐luminol‐hydrogen peroxide system, and the increased chemiluminescence signals were proportional to their concentrations, respectively. Based on this phenomenon, a chemiluminescence method coupled to capillary electrophoresis (CE) was established for simultaneous determination of ISO and PAS. The CE conditions including running buffer and running voltage were investigated in detail. The effects of the pH of H2O2 solution and the concentrations of luminol, H2O2 and Cu (II) on the CL signal were also investigated carefully. Under the optimized conditions, the analysis could be accomplished within 10 min, with the limits of detection of 0.3 µg mL–1 for ISO and 1.1 µg mL–1 for PAS, corresponding to 7.2 and 26.4 pg per injection (24 nL), respectively. Finally, the method was validated by determining the two analytes in pharmaceutical preparation and spiked human serum samples. The results of pharmaceutical tablet analysis were in good agreement with the labeled amounts. The recoveries for ISO and PAS in human serum were in the range of 92–104% and 90–113%, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Application of capillary zone electrophoresis with electrochemical detection to the identification and quantitative determination of uric acid in human urine as well as plasma is described. This work was carried out in a 30 cm×25 μm I.D. fused-silica capillary with tricine buffer and a carbon fiber bundle was employed as a working electrode, the working voltage in amperometric detection was set at +0.80 V (vs. SCE). The sample constituent is identified by stopped flow-linear sweep voltammetry. Under optimal conditions, a lower detection limit of 0.48 fmol was obtained for uric acid.  相似文献   

11.
cis-Epoxyeicosatrienoic acids (EETs) and their hydrolysis products (threo-DHETs) have been proposed to be endothelial-dependent hyperpolarizing factors (EDHFs) which upregulate blood flow when tissue perfusion is impaired. Various EET regioisomers and enantiomers are formed from arachidonate by inducible cytochrome P450 epoxygenase isoforms, and tissue EET profiles may vary with diet, time, and disease. Because EET actions and metabolism may be regio- and stereospecific, convenient methods to measure profiles of EET isomers in tissues are needed. In the current studies, we describe two simple capillary electrophoretic methods for resolving EETs. The first method involves capillary electrophoresis with a mixture of neutral and anionic beta-cyclodextrins, which in one step baseline-resolves underivatized EET regioisomers and their enantiomers. Low picogram amounts of EET enantiomers were identified based on migration times and UV spectra. The method was also used to assess the antipode purity of EET standards, and to determine murine hepatic levels of EET enantiomers. The second method involves capillary electrochromatography, which also baseline-resolves underivatized EET and DHET regioisomers in one step. We conclude that in EET assays the major advantages of capillary electrophoresis over reversed-phase HPLC are improved peak efficiency, sensitivity, and resolution, plus precise coelution of deuterated and nondeuterated EETs.  相似文献   

12.
Saccharides including mono- and disaccharides were quantitatively derivatized with 2-aminobenzoic acid (2-AA). These derivatives were then separated by capillary zone electrophoresis with UV detection using 50mM sodium phosphate buffer as the running electrolyte solution. In particular, the saccharide derivatives with the same molecular weight as 2-AA aldohexoses (mannose and glucose) and 2-AA aldopentoses (ribose and xylose) were well separated. The underlying reasons for separation were explored by studying their structural data using 1H and 13C NMR. It was found that the configurational difference between their hydroxyl group at C2 or C3 could cause the difference in Stokes' radii between their molecules and thus lead to different electrophoretic mobilities. The correlation between the electrophoretic behavior of these carbohydrate derivatives and their structures was studied utilizing the calculated molecular models of the 2-AA-labeled mannose, glucose, ribose, and xylose.  相似文献   

13.
The effectiveness of capillary electrophoresis (CE) in the field of stereoselective determination of drugs in biological matrices is demonstrated by analyzing clenbuterol in human urine. Due to the very low therapeutical doses of 20–40 μg per day the total concentrations in urine are 1–10 ng/ml. The sample was extracted with hexane–tert.-butyl methyl ether (99.5:0.5). The reconstituted sample was injected electrokinetically (50 s, 10 kV). Using phosphate buffer, pH 3.3 and hydroxyethyl-β-cyclodextrin as chiral selector the total analysis time was below 15 min. The limit of determination was estimated as 0.5 ng/ml per enantiomer. S-(−)-Bupranolol was used as internal standard. Both precision and accuracy of the method were within the limits for biological samples. The application to human urine from patients having received therapeutical doses showed a slightly predominant excretion of the (+)-enantiomer to the (−)-enantiomer.  相似文献   

14.
A simple, accurate, and robust quantitative capillary electrophoresis (CE) method for the determination of oversulfated chondroitin sulfate (OSCS) as a contaminant in heparin (Hep) preparations is described. After degradation of the polysaccharides by acidic hydrolysis, the hexosamines produced (i.e., GlcN from Hep and GalN from OSCS) were derivatized with anthranilic acid (AA) and separated by means of CE in approximately 10 min with high sensitivity detection at 214 nm (limit of detection [LOD] of ∼200 pg). Furthermore, AA-derivatized GlcN and GalN showed quite similar molar absorptivity, allowing direct and simple quantification of OSCS in Hep samples. Moreover, a preliminary step of specific enzymatic treatment by using chondroitin ABC lyase may be applied for the specific elimination of interference in the analysis due to the possible presence in Hep samples of natural chondroitin sulfate and dermatan sulfate impurities, making this analytical approach highly specific for OSCS contamination given that chondroitin ABC lyase is unable to act on this semisynthetic polymer. The CE method was validated for specificity, linearity, accuracy, precision, LOD, and limit of quantification (LOQ). Due to the very high sensitivity of CE, as little as 1% OSCS contaminant in Hep sample could be detected and quantified. Finally, a contaminated raw Hep sample was found to contain 38.9% OSCS, whereas a formulated contaminated Hep was calculated to have 39.7% OSCS.  相似文献   

15.
Although the separation efficiency of capillary electrophoresis (CE) is much higher than that of other chromatographic methods, it is sometimes difficult to adequately separate the complex ingredients in biological samples. This article describes how one effective and simple way to develop the separation efficiency in CE is to add some modifiers to the running buffer. The suitable running buffer modifier β-cyclodextrin (β-CD) was explored to fast and completely separate four phenylethanoid glycosides and aglycones (homovanillyl alcohol, hydroxytyrosol, 3,4-dimethoxycinnamic acid, and caffeic acid) in Lamiophlomis rotata (Lr) and Cistanche by capillary zone electrophoresis with ultraviolet (UV) detection. It was found that when β-CD was used as running buffer modifier, a baseline separation of the four analytes could be accomplished in less than 20 min and the detection limits were as low as 10−3 mg L−1. Other factors affecting the CE separation, such as working potential, pH value and ionic strength of running buffer, separation voltage, and sample injection time, were investigated extensively. Under the optimal conditions, a successful practical application on the determination of Lr and Cistanche samples confirmed the validity and practicability of this method.  相似文献   

16.
A facile capillary electrophoresis (CE) method for the separation of cinnamic acid and its derivatives (3,4-dimethoxycinnamic acid, 4-methoxycinnamic acid, isoferulic acid, sinapic acid, cinnamic acid, ferulic acid, and trans-4-hydroxycinnamic acid) using graphene quantum dots (GQDs) as additives with direct ultraviolet (UV) detection is reported. GQDs were synthesized by chemical oxidization and further purified by a macroporous resin column to remove salts (Na2SO4 and NaNO3) and other impurities. Transmission electron microscopy (TEM) indicated that GQDs have a relatively uniform particle size (2.3 nm). Taking into account the structural features of GQDs, cinnamic acid and its derivatives were adopted as model compounds to investigate whether GQDs can be used to improve CE separations. The separation performance of GQDs used as additives in CE was studied through variations of pH, concentration of the background electrolyte (BGE), and contents of GQDs. The results indicated that excellent separation can be achieved in less than 18 min, which is mainly attributed to the interaction between the analytes and GQDs, especially isoferulic acid, sinapic acid, and cinnamic acid.  相似文献   

17.
In recent years, a number of newer designer drugs have entered the illicit drug market. The methylenedioxy-derivates of amphetamine represent the largest group of designer drugs. This paper describes a method for screening for and quantification of ten 2,5-methylenedioxy-derivates of amphetamine and phenylethylamine in human urine, using capillary electrophoresis coupled to electrospray ionisation-mass spectrometry (CE-ESI-MS). Prior to CE-MS analysis, a simple solid-phase extraction (SPE) was used for sample cleanup. The method was validates according to international guidelines.  相似文献   

18.
A novel method for simultaneous determination of d- and l-lactic acids in plasma was presented by capillary electrophoresis with photodiode array detection at 195nm. The separation was performed in an uncoated fused-silica capillary. The parameters influencing the resolution and the migration time of lactic acids were optimized. When 150mM phosphate-Tris buffer (pH 7.0) consisting of 220mM 2-hydroxypropyl-beta-cyclodextrin and 0.2mM tetradecyltrimethylammonium bromide was utilized as the running buffer, highly effective chiral separation of d- and l-lactic acids was achieved at about 42min at an effective voltage of -25kV. The resolution of lactic acid enantiomers was >/=1.25. The limits of detection of d- and l-lactic acids in standard solution without any pretreatment were 80 and 50muM (S/N=3), respectively. Sample pretreatment was preceded by protein-removal procedure with acetonitrile. With a pre-concentration procedure by 10 times, the limits of detection of d- and l-lactic acids were 20 and 15muM (S/N=10), respectively. The satisfactory analytical performance of the proposed method was validated.  相似文献   

19.
A modified capillary electrophoretic method for the determination of nitric oxide correlated nitrate in several tissue homogenates is described in this study. The method was developed using a running buffer consisting of 200 mM lithium chloride and 10 mM borate buffer at pH 8.5, in a fused-silica column total 82 cm, effective 43 cm length and 75 μm I.D. The signal was measured at 214 nm and controlled current of 200 μA (equivalent to 12.7 kV) was applied in the reversed polarity direction. The sample was injected by vacuum pressure 50 ms (25 nl). In these conditions, bromide as internal standard and nitrate appeared at 7.2 and 8.9 min, respectively. Whole validation procedures were applied and satisfactory results were obtained. The nitrate levels of the tissue homogenates of control and -NAME applied (heart, brain, kidney, stomach, lung, testis and liver) were monitored by the present method and it was decided that the method is precise and accurate.  相似文献   

20.
Formation of Maillard reaction products (MRP) of glucosamine (GlcN) with fibrinogen and human serum albumin (HSA), under simulated physiological conditions, was detected by fluorescence (excitation/emission: 340/420 nm) and UV/Vis (max. 275 nm) spectroscopy. The application of polyacrylamide gel electrophoresis demonstrated the generation of high-molecular-weight fibrinogen and HSA MRP by GlcN. A simple and rapid capillary electrophoresis method was developed to separate MRP formed by the reaction of GlcN with proteins from GlcN autocondensation products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号