首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enzyme structures solved with and without bound substrate often show that substrate-induced conformational changes bring catalytic residues into alignment, alter the local environment, and position the substrate for catalysis. Although the structural data are compelling, the role of conformational changes in enzyme specificity has been controversial in that specificity is a kinetic property that is not easy to predict based upon structure alone. Recent studies on DNA polymerization have illuminated the role of substrate-induced conformational changes in enzyme specificity by showing that the rate at which the enzyme opens to release the bound substrate is a key kinetic parameter. The slow release of a correct substrate commits it to the forward reaction so that specificity is determined solely by the rate of substrate binding, including the isomerization step, and not by the slower rate of the chemical reaction. In contrast, fast dissociation of an incorrect substrate favors release rather than reaction. Thus, the conformational change acts as a molecular switch to select the right substrate and to recognize and disfavor the reaction of an incorrect substrate. A conformational switch may also favor release rather than reverse reaction of the product.  相似文献   

2.
Structural information for mammalian DNA pol-beta combined with molecular and essential dynamics studies have provided atomistically detailed views of functionally important conformational rearrangements that occur during DNA repair and replication. This conformational closing before the chemical reaction is explored in this work as a function of the bound substrate. Anchors for our study are available in crystallographic structures of the DNA pol-beta in "open" (polymerase bound to gapped DNA) and "closed" (polymerase bound to gapped DNA and substrate, dCTP) forms; these different states have long been used to deduce that a large-scale conformational change may help the polymerase choose the correct nucleotide, and hence monitor DNA synthesis fidelity, through an "induced-fit" mechanism. However, the existence of open states with bound substrate and closed states without substrates suggest that substrate-induced conformational closing may be more subtle. Our dynamics simulations of two pol-beta/DNA systems (with/without substrates at the active site) reveal the large-scale closing motions of the thumb and 8-kDa subdomains in the presence of the correct substrate--leading to nearly perfect rearrangement of residues in the active site for the subsequent chemical step of nucleotidyl transfer--in contrast to an opening trend when the substrate is absent, leading to complete disassembly of the active site residues. These studies thus provide in silico evidence for the substrate-induced conformational rearrangements, as widely assumed based on a variety of crystallographic open and closed complexes. Further details gleaned from essential dynamics analyses clarify functionally relevant global motions of the polymerase-beta/DNA complex as required to prepare the system for the chemical reaction of nucleotide extension.  相似文献   

3.
4.
Showalter AK  Tsai MD 《Biochemistry》2002,41(34):10571-10576
Intensive study has been devoted to understanding the kinetic and structural bases underlying the exceptionally high fidelity (low error frequencies) of the typical DNA polymerase. Commonly proposed explanations have included (i) the concept of fidelity check points, in which the correctness of a nascent base pair match is tested at multiple points along the reaction pathway, and (ii) an induced-fit fidelity enhancement mechanism based on a rate-limiting, substrate-induced conformational change. In this article, we consider the evidence and theoretical framework for the involvement of such mechanisms in fidelity enhancement. We suggest that a "simplified" model, in which fidelity is derived fundamentally from differential substrate binding at the transition state of a rate-limiting chemical step, is consistent with known data and sufficient to explain the substrate selectivity of these enzymes.  相似文献   

5.
Human major apurinic/apyrimidinic endonuclease (APE1) is a multifunctional enzyme that plays a central role in DNA repair through the base excision repair (BER) pathway. Besides BER, APE1 is involved in an alternative nucleotide incision repair (NIR) pathway that bypasses glycosylases. We have analyzed the conformational dynamics and the kinetic mechanism of APE1 action in the NIR pathway. For this purpose we recorded changes in the intensity of fluorescence of 2-aminopurine located in two different positions in a substrate containing dihydrouridine (DHU) during the interaction of the substrate with the enzyme. The enzyme was found to change its conformation within the complex with substrate and also within the complex with the reaction product, and the release of the enzyme from the complex with the product seemed to be the limiting stage of the enzymatic process. The rate constants of the catalytic cleavage of DHU-containing substrates by APE1 were comparable with the appropriate rate constants for substrates containing apurinic/apyrimidinic site or tetrahydrofuran residue, which suggests that NIR is a biologically important process.  相似文献   

6.
The Escherichia coli very short patch (VSP) repair pathway corrects thymidine-guanine mismatches that result from spontaneous hydrolytic deamination damage of 5-methyl cytosine. The VSP repair pathway requires the Vsr endonuclease, DNA polymerase I, a DNA ligase, MutS, and MutL to function at peak efficiency. The biochemical roles of most of these proteins in the VSP repair pathway have been studied extensively. However, these proteins have not been studied together in the context of VSP repair in an in vitro system. Using purified components of the VSP repair system in a reconstitution reaction, we have begun to develop an understanding of the role played by each of these proteins in the VSP repair pathway and have gained insights into their interactions. In this report we demonstrate an in vitro reconstitution of the VSP repair pathway using a plasmid DNA substrate. Surprisingly, the repair track length can be modulated by the concentration of DNA ligase. We propose roles for MutL and MutS in coordination of this repair pathway.  相似文献   

7.
The inactivation and conformational changes of the multifunctional fatty acid synthase (acyl-CoA:malonyl-CoA C-acyltransferase (decarboxylating, oxoacyl- and enoyl-reducing and thioester-hydrolyzing), EC 2.3.1.85) from chicken liver have been studied in urea solution. The results show that complete inactivation of the fatty acid synthase occurs before obvious conformational changes with regard to the overall, beta-ketoacyl reduction and acetoacetyl-CoA reduction reactions. Significant conformational changes indicated by the changes of the intrinsic fluorescence emission and the circular dichroism spectra occurred at higher urea concentrations. The kinetic rate constants for the two phase inactivation and unfolding reactions were measured and semilogarithmic plots of the activity versus time gave curves which could be resolved into two straight lines, indicating that both the inactivation and unfolding processes consisted of fast and slow phases as a first-order reaction. The results from Lineweaver-Burk plots indicated that urea is a competitive inhibitor for acetyl-CoA and malonyl-CoA, with K(m) increasing with increasing urea concentrations. However, urea is a noncompetitive inhibitor for NADPH, the substrate of the overall reaction and beta-ketoacyl reduction reaction, and acetylacetate, the substrate of the beta-ketoacyl reduction reaction. Activation by low concentrations of urea was observed although this activation was only temporarily induced in an early stage of inactivation. The aggregation phenomenon of the fatty acid synthase in a certain concentration range of urea (3-4 M) was also observed during unfolding. This result shows that this multifunctional enzyme unfolds with competition with misfolding in the folding pathway. Comparison of inactivation and conformational changes of the enzyme as well as aggregation imply that unfolding intermediates may exist during urea denaturation. The possible unfolding pathway of fatty acid synthase is also discussed in this paper.  相似文献   

8.
Replicative DNA polymerases are stalled by damaged DNA while the newly discovered Y-family DNA polymerases are recruited to rescue these stalled replication forks, thereby enhancing cell survival. The Y-family DNA polymerases, characterized by low fidelity and processivity, are able to bypass different classes of DNA lesions. A variety of kinetic and structural studies have established a minimal reaction pathway common to all DNA polymerases, although the conformational intermediates are not well defined. Furthermore, the identification of the rate-limiting step of nucleotide incorporation catalyzed by any DNA polymerase has been a matter of long debate. By monitoring time-dependent fluorescence resonance energy transfer (FRET) signal changes at multiple sites in each domain and DNA during catalysis, we present here a real-time picture of the global conformational transitions of a model Y-family enzyme: DNA polymerase IV (Dpo4) from Sulfolobus solfataricus. Our results provide evidence for a hypothetical DNA translocation event followed by a rapid protein conformational change prior to catalysis and a subsequent slow, post-chemistry protein conformational change. Surprisingly, the DNA translocation step was induced by the binding of a correct nucleotide. Moreover, we have determined the directions, rates, and activation energy barriers of the protein conformational transitions, which indicated that the four domains of Dpo4 moved in a synchronized manner. These results showed conclusively that a pre-chemistry conformational change associated with domain movements was too fast to be the rate-limiting step. Rather, the rearrangement of active site residues limited the rate of correct nucleotide incorporation. Collectively, the conformational dynamics of Dpo4 offer insights into how the inter-domain movements are related to enzymatic function and their concerted interactions with other proteins at the replication fork.  相似文献   

9.
The prototypic type IB topoisomerase isolated from vaccinia virus cleaves the phosphodiester backbone of duplex DNA at the sequence 5'-(C/T)CCTT, forming a covalent 3'-phosphotyrosyl adduct. A precleavage conformational change in which the enzyme clamps circumferentially around the DNA has been implicated on the basis of structural and biochemical studies. However, no direct measurements to elucidate this key step have been obtained to date. To address this shortcoming we have developed two new fluorescence assays that allow detection of conformational changes in both the enzyme and substrate DNA, and allow determination of the thermodynamic and kinetic mechanism for noncovalent DNA binding and phosphodiester cleavage. The results indicate that clamp closing occurs in a rapid step (>25 s(-1)) that is at least 14-fold faster than the maximal rate of DNA cleavage. Opening of the clamp to release the noncovalently bound substrate is also 5-8-fold more rapid than DNA cleavage. We propose a model in which DNA cleavage and religation are connected through a single high energy transition state involving covalent bond breaking. Alternative models that involve a slow precleavage conformational step are not easily reconciled with the available data.  相似文献   

10.
We carried out a steady state kinetic analysis of the bacteriophage T4 DNA-[N6-adenine]methyltransferase (T4 Dam) mediated methyl group transfer reaction from S-adenosyl-l-methionine (AdoMet) to Ade in the palindromic recognition sequence, GATC, of a 20-mer oligonucleotide duplex. Product inhibition patterns were consistent with a steady state-ordered bi-bi mechanism in which the order of substrate binding and product (methylated DNA, DNA(Me) and S-adenosyl-l-homocysteine, AdoHcy) release was AdoMet downward arrow DNA downward arrow DNA(Me) upward arrow AdoHcy upward arrow. A strong reduction in the rate of methylation was observed at high concentrations of the substrate 20-mer DNA duplex. In contrast, increasing substrate AdoMet concentration led to stimulation in the reaction rate with no evidence of saturation. We propose the following model. Free T4 Dam (initially in conformational form E) randomly interacts with substrates AdoMet and DNA to form a ternary T4 Dam-AdoMet-DNA complex in which T4 Dam has isomerized to conformational state F, which is specifically adapted for catalysis. After the chemical step of methyl group transfer from AdoMet to DNA, product DNA(Me) dissociates relatively rapidly (k(off) = 1.7 x s(-1)) from the complex. In contrast, dissociation of product AdoHcy proceeds relatively slowly (k(off) = 0.018 x s(-1)), indicating that its release is the rate-limiting step, consistent with kcat = 0.015 x s(-1). After AdoHcy release, the enzyme remains in the F conformational form and is able to preferentially bind AdoMet (unlike form E, which randomly binds AdoMet and DNA), and the AdoMet-F binary complex then binds DNA to start another methylation cycle. We also propose an alternative pathway in which the release of AdoHcy is coordinated with the binding of AdoMet in a single concerted event, while T4 Dam remains in the isomerized form F. The resulting AdoMet-F binary complex then binds DNA, and another methylation reaction ensues. This route is preferred at high AdoMet concentrations.  相似文献   

11.
Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been performed to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol.  相似文献   

12.
Borgaro JG  Chang A  Machutta CA  Zhang X  Tonge PJ 《Biochemistry》2011,50(49):10678-10686
β-Ketoacyl-ACP synthase (KAS) enzymes catalyze Claisen condensation reactions in the fatty acid biosynthesis pathway. These reactions follow a ping-pong mechanism in which a donor substrate acylates the active site cysteine residue after which the acyl group is condensed with the malonyl-ACP acceptor substrate to form a β-ketoacyl-ACP. In the priming KASIII enzymes the donor substrate is an acyl-CoA while in the elongating KASI and KASII enzymes the donor is an acyl-ACP. Although the KASIII enzyme in Escherichia coli (ecFabH) is essential, the corresponding enzyme in Mycobacterium tuberculosis (mtFabH) is not, suggesting that the KASI or II enzyme in M. tuberculosis (KasA or KasB, respectively) must be able to accept a CoA donor substrate. Since KasA is essential, the substrate specificity of this KASI enzyme has been explored using substrates based on phosphopantetheine, CoA, ACP, and AcpM peptide mimics. This analysis has been extended to the KASI and KASII enzymes from E. coli (ecFabB and ecFabF) where we show that a 14-residue malonyl-phosphopantetheine peptide can efficiently replace malonyl-ecACP as the acceptor substrate in the ecFabF reaction. While ecFabF is able to catalyze the condensation reaction when CoA is the carrier for both substrates, the KASI enzymes ecFabB and KasA have an absolute requirement for an ACP substrate as the acyl donor. Provided that this requirement is met, variation in the acceptor carrier substrate has little impact on the k(cat)/K(m) for the KASI reaction. For the KASI enzymes we propose that the binding of ecACP (AcpM) results in a conformational change that leads to an open form of the enzyme to which the malonyl acceptor substrate binds. Finally, the substrate inhibition observed when palmitoyl-CoA is the donor substrate for the KasA reaction has implications for the importance of mtFabH in the mycobacterial FASII pathway.  相似文献   

13.
The site-specific DNA cleavage and religation activities of the vaccinia virus type IB topoisomerase at (C/T)CCTT(+1)X(-1) sites in duplex DNA have allowed detailed investigations of the chemical and conformational steps on the reaction pathway of this enzyme (see accompanying article (Kwon, K., and Stivers, J. T. (2002) J. Biol. Chem. 277, 345-352)). To extend these studies to the DNA substrate, we have performed 19F NMR experiments using substrates in which the +1 T has been replaced with the NMR-sensitive thymidine base analogue 5-fluoro-2'-deoxyuridine (5-F-dUrd). Substitution of 5-F-dUrd has little effect on the binding affinity of topoisomerase I for DNA, results in small changes in the cleavage and religation rate constants, and produces a net 3-fold decrease in the cleavage equilibrium constant as compared with the CCCTT consensus DNA. One-dimensional 19F NMR experiments show that the +1 5-F-dUrd is in a dynamic equilibrium between a stacked and unstacked state in both the noncovalent complex and the covalent phosphotyrosine complex. These NMR observations are supported by the selective sensitivity of the +1 T and +1 5-F-dUrd to KMnO4 oxidation. A role for localized DNA distortion in the topoisomerase I mechanism is suggested.  相似文献   

14.
M.EcoRI, a bacterial sequence-specific S-adenosyl-L-methionine-dependent DNA methyltransferase, relies on a complex conformational mechanism to achieve its remarkable specificity, including DNA bending, base flipping and intercalation into the DNA. Using transient fluorescence and fluorescence lifetime studies with cognate and noncognate DNA, we have characterized several reaction intermediates involving the WT enzyme. Similar studies with a bending-impaired, enhanced-specificity M.EcoRI mutant show minimal differences with the cognate DNA, but significant differences with noncognate DNA. These results provide a plausible explanation of the way in which destabilization of reaction intermediates can lead to changes in substrate specificity.  相似文献   

15.
DNA glycosylases play a key role in DNA repair, which maintains the integrity of the cell genome. The structures of many DNA glycosylases have been solved to date. The review considers these structures and the dynamics of DNA glycosylase interactions with DNA. The available data suggest that lesion recognition by DNA glycosylases is a highly dynamic process that is accompanied by multiple conformational changes in the enzyme and DNA substrate.  相似文献   

16.
Abstract

Normal mode analysis, using the elastic network model, has been employed to envision the low frequency normal mode motion trends in the structures of five intermediates and a transition state in the kinetic pathway of E. coli dihydrofolate reductase (DHFR). Five of the reaction pathway analog structures and a crystal structure resembling the transition state, using X-ray analyses determined by Kraut et al., have been adapted as structural models. The motions that poise pathways of the M20 loop transitions from closed to occluded conformations and sub domain rotation to close the substrate cleft, have been predicted and envisioned for the first time by this study. Pathway entries to the movement of the substrate binding cleft helices are also envisioned. These motions play roles in transition structure stabilization and in regulating the release of the product tetrahydrofolate (THF). The motions observed push the ground state conformation of each intermediate towards a higher energy sub state conformation. A set of conserved residues involved in the catalytic reactions and conformational changes, previously studied by kinetic, theoretical and NMR, have been analyzed. The importance of these motions in terms of protein dynamics are revealed and envisioned by the normal mode analysis. Additional residues are proposed as candidates for further study of their potential promotional function.  相似文献   

17.
Nonhomologous end-joining (NHEJ) is one of the repair pathways for double-strand breaks (DSBs) in eukaryotic cells. By using linearized plasmid substrates, we have detected intramolecular NHEJ activity in a cell-free extract from the cultured silkworm cell line BmN4. The efficiency of NHEJ differed according to the structure of DNA ends; approximately 1% of input DNA was repaired when the substrate had cohesive ends. The reaction required the hydrolysis of nucleotide triphosphate; interestingly, all of four rNTPs or four dNTPs could support the reaction. A substrate with non-complementary DNA ends was mainly repaired by the DNA polymerase-mediated pathway. These results indicate that the present cell-free system will be useful to analyze the molecular mechanisms of DSB repair and NHEJ in insect cells.  相似文献   

18.
Gelato KA  Martin SS  Wong S  Baldwin EP 《Biochemistry》2006,45(40):12216-12226
Cre recombinase residue Arg259 mediates a canonical bidentate hydrogen-bonded contact with Gua27 of its LoxP DNA substrate. Substituting Cyt8-Gua27 with the three other basepairs, to give LoxAT, LoxTA, and LoxGC, reduced Cre-mediated recombination in vitro, with the preference order of Gua27 > Ade27 approximately Thy27 > Cyt27. While LoxAT and LoxTA exhibited 2.5-fold reduced affinity and 2.5-5-fold slower reaction rates, LoxGC was a barely functional substrate. Its maximum level of turnover was 6-fold reduced over other substrates, and it exhibited 8.5-fold reduced Cre binding and 6.3-fold slower turnover rate. With LoxP, the rate-limiting step for recombination occurs after protein-DNA complex assembly but before completion of the first strand exchange to form the Holliday junction (HJ) intermediate. With the mutant substrates, it occurs after HJ formation. Using an increased DNA-binding E262Q/E266Q "CreQQ" variant, all four substrates react more readily, but with much less difference between them, and maintained the earlier rate-limiting step. The data indicate that Cre discriminates substrates through differences in (i) concentration dependence of active complex assembly, (ii) turnover rate, and (iii) maximum yield of product at saturation, all of which are functions of the Cre-DNA binding interaction. CreQQ suppression of Lox mutant defects implies that coupling between binding and turnover involves a change in Cre subunit DNA affinities during the "conformational switch" that occurs prior to the second strand exchange. These results provide an example of how a DNA-binding enzyme can exert specificity via affinity modulation of conformational transitions that occur along its reaction pathway.  相似文献   

19.
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme∶DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics.  相似文献   

20.
Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of strated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2–6-nucleotide patch size) pathways need AP endonuclease to generate a 3′ hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号