首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene encoding superoxide dismutase was revealed in the genome of the thermoacidophilic crenarchaeon Acidilobus saccharovorans. A recombinant expression vector was constructed and transformed into E. coli cells. The novel recombinant superoxide dismutase was purified and characterized. The enzyme was shown to be an iron-dependent super-oxide dismutase able to bind various bivalent metals in the active site. According to differential scanning calorimetric data, the denaturation temperature of the enzyme is 107.3°C. The maximal activity of the Fe(II) reconstituted enzyme defined by xanthine oxidase assay is 1700 U/mg protein. Study of the thermal stability of the superoxide dismutase samples with various metal contents by tryptophan fluorescence indicated that the thermal stability and activity of the enzyme directly depend on the nature of the reconstituted metal and the degree of saturation of binding sites.  相似文献   

2.
Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne's muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (1) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum; and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain.  相似文献   

3.
4.
An iron-containing superoxide dismutase (SOD; EC 1.15.1.1) of the hyperthermophilic archaeon Acidianus ambivalens (Aa-SOD) has been purified and characterized and the gene has been cloned and sequenced. The SOD from the facultatively aerobic member of the crenarchaeota could be expressed in E. coli. Both, the native as well as the heterologously overproduced protein turned out to have extraordinarily high melting temperatures of 128 degrees C and 124.5 degrees C, respectively. To the best of our knowledge, this is the highest directly measured melting temperature of a native protein. Surprisingly, neither the native nor the recombinant superoxide dismutase displays 100% occupation of the metal coordination sites. Obviously it is not the incorporation of a metal ion that confers the extreme thermostability. Expression of the superoxide dismutase in the presence of different metals such as Fe, Co, Ni, Mn and Cu offered the possibility of studying the hitherto unknown cofactor preference of iron-superoxide dismutase. The recombinant enzyme displayed the highest preference for incorporation of cobalt although iron is used as the natural cofactor. Spectroscopic analysis by EPR, atomic absorption and UVNis spectroscopy as well as activity measurements and differential scanning calorimetry of the metal substituted superoxide dismutases were performed. However, the superoxide dismutase of A. ambivalens is active only with iron but may incorporate other metals equally well in the catalytic center without loss of conformational stability or heat tolerance. The co-form of the enzyme could be crystallized.  相似文献   

5.
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides, and represent the only de novo pathway to provide DNA building blocks. Three different classes of RNR are known, denoted I-III. Class I RNRs are heteromeric proteins built up by α and β subunits and are further divided into different subclasses, partly based on the metal content of the β-subunit. In subclass Ib RNR the β-subunit is denoted NrdF, and harbors a manganese-tyrosyl radical cofactor. The generation of this cofactor is dependent on a flavodoxin-like maturase denoted NrdI, responsible for the formation of an active oxygen species suggested to be either a superoxide or a hydroperoxide. Herein we report on the magnetic properties of the manganese-tyrosyl radical cofactor of Bacillus anthracis NrdF and the redox properties of B. anthracis NrdI. The tyrosyl radical in NrdF is stabilized through its interaction with a ferromagnetically coupled manganese dimer. Moreover, we show through a combination of redox titration and protein electrochemistry that in contrast to hitherto characterized NrdIs, the B. anthracis NrdI is stable in its semiquinone form (NrdIsq) with a difference in electrochemical potential of ∼110 mV between the hydroquinone and semiquinone state. The under anaerobic conditions stable NrdIsq is fully capable of generating the oxidized, tyrosyl radical-containing form of Mn-NrdF when exposed to oxygen. This latter observation strongly supports that a superoxide radical is involved in the maturation mechanism, and contradicts the participation of a peroxide species. Additionally, EPR spectra on whole cells revealed that a significant fraction of NrdI resides in its semiquinone form in vivo, underscoring that NrdIsq is catalytically relevant.  相似文献   

6.
Leishmania tropica promastigotes stimulate macrophages to produce activated oxygen as measured by luminol-enhanced chemiluminescence. Exogenous superoxide dismutase and catalase inhibit this by 95%, implying that both superoxide and hydrogen peroxide are generated. Whereas leishmania have undetectable levels of catalase, and very little glutathione peroxidase, they have relatively high amcunts of superoxide dismutase (23 units/mg protein). The leishmanial superoxide dismutase is cyanide-insensitive but azide- and peroxide-sensitive, suggesting that the enzyme may be iron-containing. Furthermore, the leishmanial superoxide dismutase is insensitive to diethyldithiocarbamate, which inhibits vertebrate enzymes. Thus, leishmania may contain a superoxide dismutase which is different from its host's enzyme. A specific inhibitor of this enzyme might serve as an antileishmanial agent.  相似文献   

7.
Metal binding by apo-manganese superoxide dismutase (apo-MnSOD) is essential for functional maturation of the enzyme. Previous studies have demonstrated that metal binding by apo-MnSOD is conformationally gated, requiring protein reorganization for the metal to bind. We have now solved the X-ray crystal structure of apo-MnSOD at 1.9 Å resolution. The organization of active site residues is independent of the presence of the metal cofactor, demonstrating that protein itself templates the unusual metal coordination geometry. Electrophoretic analysis of mixtures of apo- and (Mn2)-MnSOD, dye-conjugated protein, or C-terminal Strep-tag II fusion protein reveals a dynamic subunit exchange process associated with cooperative metal binding by the two subunits of the dimeric protein. In contrast, (S126C) (SS) apo-MnSOD, which contains an inter-subunit covalent disulfide-crosslink, exhibits anti-cooperative metal binding. The protein concentration dependence of metal uptake kinetics implies that protein dissociation is involved in metal binding by the wild type apo-protein, although other processes may also contribute to gating metal uptake. Protein concentration dependent small-zone size exclusion chromatography is consistent with apo-MnSOD dimer dissociation at low protein concentration (KD = 1 × 10−6 M). Studies on metal uptake by apo-MnSOD in Escherichia coli cells show that the protein exhibits similar behavior in vivo and in vitro.  相似文献   

8.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen with the ability to survive and replicate in macrophages. Periplasmic copper binding protein CueP is known to confer copper resistance to S. Typhimurium, and has been implicated in ROS scavenge activity by transferring the copper ion to a periplasmic superoxide dismutase or by directly reducing the copper ion. Structural and biochemical studies on CueP showed that its copper binding site is surrounded by conserved cysteine residues. Here, we present evidence that periplasmic disulfide isomerase DsbC plays a key role in maintaining CueP protein in the reduced state. We observed purified DsbC protein efficiently reduced the oxidized form of CueP, and that it acted on two (Cys104 and Cys172) of the three conserved cysteine residues. Furthermore, we found that a surface-exposed conserved phenylalanine residue in CueP was important for this process, which suggests that DsbC specifically recognizes the residue of CueP. An experiment using an Escherichia coli system confirmed the critical role played by DsbC in the ROS scavenge activity of CueP. Taken together, we propose a molecular insight into how CueP collaborates with the periplasmic disulfide reduction system in the pathogenesis of the bacteria.  相似文献   

9.
Several bacteria possess periplasmic Cu,Zn superoxide dismutases which can confer protection from extracellular reactive oxygen species. Thus, deletion of the sodC1 gene reduces Salmonella enterica serovar Typhimurium ability to colonize the spleens of wild type mice, but enhances virulence in p47phox mutant mice. To look into the role of periplamic Cu,Zn superoxide dismutase and into possible additive effects of the ferritin-like Dps protein involved in hydrogen peroxide detoxification, we have analyzed bacterial survival in response to extracellular sources of superoxide and/or hydrogen peroxide. Exposure to extracellular superoxide of Salmonella Typhimurium mutant strains lacking the sodC1 and sodC2 genes and/or the dps gene does not cause direct killing of bacteria, indicating that extracellular superoxide is poorly bactericidal. In contrast, all mutant strains display a sharp hydrogen peroxide-dependent loss of viability, the dps,sodC1,sodC2 mutant being less resistant than the dps or the sodC1,sodC2 mutants. These findings suggest that the role of Cu,Zn superoxide dismutase in bacteria is to remove rapidly superoxide from the periplasm to prevent its reaction with other reactive molecules. Moreover, the nearly additive effect of the sodC and dps mutations suggests that localization of antioxidant enzymes in different cellular compartments is required for bacterial resistance to extracytoplasmic oxidative attack.  相似文献   

10.
The green microalgae Closterium ehrenbergii is an ideal organism for ecotoxicology assessments; however, its toxicogenomics has been insufficiently examined. Here, we identified three iron/manganese superoxide dismutase (SOD) genes (designated as CeFeSOD1, CeFeSOD2, and CeMnSOD) from C. ehrenbergii and examined their expressional patterns for four metals (iron, manganese, copper, and nickel). These genes encoded 362, 224, and 245 amino acids, respectively; signal-peptide analysis showed that they were differentially located in chloroplasts, cytosol, or mitochondria. Real-time PCRs revealed differential expression patterns according to metal and doses. Interestingly, CeSODs displayed no noticeable changes to treatment with their corresponding cofactor metals, iron or manganese, even at high doses. However, they were obviously up-regulated under toxic metal (copper and nickel) exposure, exhibiting approximately 10.8- and 4.4-fold increases, respectively. Copper (0.2 mg/L) dramatically stimulated intracellular reactive oxygen species (ROS) formation, increased SOD activity, and reduced photosynthetic efficiency in C. ehrenbergii. These results suggest that CeFeSODs and CeMnSOD might be involved in protecting cells against damage and oxidative stress caused by non-cofactor metals, such as copper and nickel. These genes were sensitively responsive at levels well below the EC50, showing that they can be used as molecular biomarkers to assess the toxicity of specific metal contaminants.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons progressively and rapidly degenerate, eventually leading to death. The first protein found to contain ALS-associated mutations was copper/zinc superoxide dismutase 1 (SOD1), which is conformationally stable when it contains its metal ligands and has formed its native intramolecular disulfide. Mutations in SOD1 reduce protein folding stability via disruption of metal binding and/or disulfide formation, resulting in misfolding, aggregation, and ultimately cellular toxicity. A great deal of effort has focused on preventing the misfolding and aggregation of SOD1 as a potential therapy for ALS; however, the results have been mixed. Here, we utilize a small-molecule polytherapy of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuATSM) and ebselen to mimic the metal delivery and disulfide bond promoting activity of the cellular chaperone of SOD1, the “copper chaperone for SOD1.” Using microscopy with automated image analysis, we find that polytherapy using CuATSM and ebselen is highly effective and acts in synergy to reduce inclusion formation in a cell model of SOD1 aggregation for multiple ALS-associated mutants. Polytherapy reduces mutant SOD1-associated cell death, as measured by live-cell microscopy. Measuring dismutase activity via zymography and immunoblotting for disulfide formation showed that polytherapy promoted more effective maturation of transfected SOD1 variants beyond either compound alone. Our data suggest that a polytherapy of CuATSM and ebselen may merit more study as an effective method of treating SOD1-associated ALS.  相似文献   

12.
The major plasma protein of the eastern oyster, Crassostrea virginica, was purified, characterized and named dominin. SDS-PAGE analyses revealed that dominin consistently made up more than 40% of eastern oyster plasma and extrapallial fluid proteins. Three different forms of dominin were observed under non-reducing conditions. PCR and RACE primers designed from partial amino acid sequences obtained by tandem mass spectrometry of purified dominin identified 720 bp of complete cDNA encoding 192 amino acid residues. Based on the deduced amino acid sequence of mature dominin, its molecular mass was calculated to be 19,389 Da and was lower than the molecular mass of purified dominin measured by MALDI. This difference is likely due to post-translational modifications of dominin as the purified protein was found to be glycolysated, phosphorylated and likely sulfated. The amino acid sequence showed high similarity to the major plasma protein of the Pacific oyster (Crassostrea gigas), cavortin, and of the green-lipped mussel (Perna canaliculus), pernin, and to a recently described protein labeled as an extracellular superoxide dismutase from the Sydney rock oyster Saccostrea glomerata. While dominin was found to possess a Cu/Zn superoxide dismutase (SOD) domain, the domain was not completely conserved which explained why purified dominin lacked SOD activity. Dominin mRNA was detected in hemocytes by in situ hybridization and its expression measured by quantitative real time RT-PCR was significantly higher in winter than summer. Although the function(s) of dominin and homologous proteins is uncertain, the reported ability of cavortin to sequester iron and possibly limit the availability of this essential metal to pathogens suggests a potential role in host defense for this group of dominant plasma proteins. Other possible functions of dominin in antioxidation, wound repair, metal transport and shell mineralization are discussed leading us to conclude that dominin is likely a multifunctional protein.  相似文献   

13.
The first structure of a cambialistic superoxide dismutase (SOD) from Propionibacterium shermanii exhibiting similar activity with iron and with manganese was solved at a resolution of 1.6?Å and 1.9?Å respectively. Surprisingly, no obvious differences between the two SODs were observable. The protein crystallises as a homo dimer in the asymmetric unit. Because of the crystallographic symmetry, it forms a tetramer. Structures of both the manganese and the ferric form were solved using molecular replacement techniques and multiple isomorphous replacement. The tertiary structure is similar to that of the other superoxide dismutases, the metal being fivefold coordinated by three histidines, one aspartate and one water molecule. The second shell of residues consists of hydrophobic amino acids, histidines and two water molecules, which are assumed to be involved in both the catalytic activity and structural stability of this superoxide dismutase. This shell may also be responsible for the cambialistic behaviour. This work shows that the reason for the metal specificity is not trivial, although minor alterations in the metal environment might be responsible for this behaviour.  相似文献   

14.
The noncanonical amino acid p-azidomethyl-l-phenylalanine can be genetically incorporated into proteins in bacteria, and has been used both as a spectroscopic probe and for the selective modification of proteins by alkynes using click chemistry. Here we report identification of Escherichia coli tyrosyl tRNA synthetase mutants that allow incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast. When expressed together with the cognate E. coli tRNACUATyr, the new mutant tyrosyl tRNA synthetases directed robust incorporation of p-azidomethyl-l-phenylalanine into a model protein, human superoxide dismutase, in response to the UAG amber nonsense codon. Mass spectrometry analysis of purified superoxide dismutase proteins confirmed the efficient site-specific incorporation of p-azidomethyl-l-phenylalanine. This work provides an additional tool for the selective modification of proteins in eukaryotic cells.  相似文献   

15.
The inhibition by superoxide dismutase of cytochrome c reduction by a range of semiquinone radicals has been studied. The semiquinones were produced from the parent quinones by reduction with xanthine and xanthine oxidase. Most of the quinones studied were favored over O2 as the enzyme substrate, and in air as well as N2, semiquinone radicals rather than superoxide were produced and they caused the cytochrome c reduction. With all but one of the quinones (benzoquinone), cytochrome c reduction in air was inhibited by superoxide dismutase, but the amount of enzyme required for inhibition was up to 100 times greater than that required to inhibit reduction by superoxide. It was highest for the quinones with the highest redox potential. These results demonstrate how superoxide dismutase can inhibit cytochrome c reduction by species other than superoxide. They can be explained by the dismutase displacing the equilibrium: semiquinone + O2 ? quinone + O2? to the right, thereby allowing the forward reaction to out-compete other reactions of the semiquinone. The implication from these findings that superoxide dismutase-inhibitable reduction of cytochrome c may not be a specific test for superoxide production is discussed.  相似文献   

16.
We have measured the contribution of the reduced form of bovine ZnCu superoxide dismutase to the relaxation of the 35Cl nucleus of chloride ion. The reduced protein has a molar relaxivity approximately 2.5 greater than the metal free protein, and addition of a small excess of cyanide lowers the relaxivity of the reduced protein to that of the apo-protein. We have interpreted these observations in terms of an open coordination position on one of the two metal ions, and we have proposed a mechanism for the reduction of superoxide by reduced superoxide dismutase which requires that O2? binds to Cu+ prior to electron transfer.  相似文献   

17.
Mycoplasma genitalium is the smallest self-replicating bacterium and an important human pathogen responsible for a range of urogenital infections and pathologies. Due to its limited genome size, many genes conserved in other bacteria are missing in M. genitalium. Genes encoding catalase and superoxide dismutase are absent, and how this pathogen overcomes oxidative stress remains poorly understood. In this study, we characterized MG_427, a homolog of the conserved osmC, which encodes hydroperoxide peroxidase, shown to protect bacteria against oxidative stress. We found that recombinant MG_427 protein reduced organic and inorganic peroxide substrates. Also, we showed that a deletion mutant of MG_427 was highly sensitive to killing by tert-butyl hydroperoxide and H2O2 compared to the sensitivity of the wild type. Further, the fully complemented mutant strain reversed its oxidative sensitivity. Examination of the expression pattern of MG_427 during osmotic shock, oxidative stress, and other stress conditions revealed its lack of induction, distinguishing MG_427 from other previously characterized osmC genes.  相似文献   

18.
19.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was fully characterized from leaves of the higher plant Pisum sativum L., var. Lincoln. The amino acid composition determined for the enzyme was compared with that of a wide spectrum of superoxide dismutases and found to have a highest degree of homology with the mitochondrial manganese superoxide dismutases from rat liver and yeast. The enzyme showed an apparent pH optimum of 8.6 and at 25°C had a maximum stability at alkaline pH values. By kinetic competition experiments, the rate constant for the disproportionation of superoxide radicals by pea leaf manganese superoxide dismutase was found to be 1.61 × 109 molar−1·second−1 at pH 7.8 and 25°C. The enzyme was not sensitive to NaCN or to H2O2, but was inhibited by N3. The sulfhydryl reagent p-hydroxymercuribenzoate at 1 mm concentration produced a nearly complete inhibition of the manganese superoxide dismutase activity. The metal chelators o-phenanthroline, EDTA, and diethyldithiocarbamate all inhibited activity slightly in decreasing order of intensity. A comparative study between this higher plant manganese superoxide dismutase and other dismutases from different origins is presented.  相似文献   

20.
Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, an extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (haloenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (< 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 μM, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 μM medium copper, holoenzyme secretion is maintained throughout cell growth.The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN?-insensitive, manganese form of this enzyme. Cells grown at 10 μM copper shown 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号