首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A stereoselective RP-high performance liquid chromatography (HPLC) assay to determine simultaneously the enantiomers of esmolol and its acid metabolite in human plasma was developed. The method involved a solid-phase extraction and a reversed-phase chromatographic separation with UV detection (lambda = 224 nm) after chiral derivatization. 2,3,4,6-tetra-O-acetyl-beta-d-glucopyranosyl isothiocyanate (GITC) was employed as a pre-column chiral derivatization reagent. The assay was linear from 0.09 to 8.0 microg/ml for each enantiomer of esmolol and 0.07-8.0 microg/ml for each enantiomer of the acid metabolite. The absolute recoveries for all enantiomers were >73%. The intra- and inter-day variations were <15%. The validated method was applied to quantify the enantiomers of esmolol and its metabolite in human plasma for hydrolysis studies.  相似文献   

2.
A precise and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for simultaneous determination of vinpocetine (VP) and its primary metabolite, apovincaminic acid (AVA), in rat plasma was developed and validated. The analytes and the internal standard-dimenhydrinate were extracted from 50 μL aliquots of rat plasma via solid–liquid extraction. Chromatographic separation was achieved in a run time of 3.5 min on a C18 column under isocratic conditions. Detection of analytes and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The protonated precursor to product ion transitions monitored for VP, AVA and IS were m/z 351.4 → 280.2, 323.2 → 280.2 and 256.2 → 167.3 respectively. The method was fully validated for its sensitivity, selectivity, accuracy and precision, matrix effect, stability study and dilution integrity. A linear dynamic range of 0.5–500 ng/mL for both VP and AVA was evaluated with mean correlation coefficient (r) of 0.9970 and 0.9984 respectively. The precision of the assay (RSD%) was less than 8.55% at all concentrations levels for both VP and AVA. This method was successfully applied to a pharmacokinetic study of VP in rats after intravenous (1 mg/kg) and oral (1 mg/kg) administration.  相似文献   

3.
The discrepancy of results for the quantification of androstenedione in human serum between a radioimmunoassay (RIA) method and high performance liquid chromatography tandem-mass spectrometry (LC–MS/MS) was investigated. RIA overestimated concentrations compared to LC–MS/MS on 59 clinical samples (RIA = 1.79 × LC–MS/MS + 0.94). RIA kit and LC–MS/MS calibrants were also determined by both methods. The RIA performed with improved accuracy on the calibrants (RIA = 1.35 × LC–MS/MS − 0.28). Lipid, protein, electrolyte content, and pH of the two sets of calibrants were further investigated. The RIA calibrants contained little lipid material, while the LC–MS/MS calibrant material contained the same levels expected in normal serum/plasma. The pH and sex hormone binding globulin (SHBG) values were different between the RIA calibrants and the LC–MS/MS calibrant material (SHBG, 31 ± 2 and 38 ± 2 nmol/l; pH, 8.27 ± 0.18 and 8.66 ± 0.03, respectively). No correlation was observed between androstenedione RIA and LC–MS/MS discrepancy and lipid or protein. LC–MS/MS sample preparation was tested for the removal of protein-bound material and recovery determined (99–108%). The corresponding RIA results overestimated androstenedione by 52–174% compared to LC–MS/MS. The results here demonstrate that LC–MS/MS is the more accurate method.  相似文献   

4.
An enantioselective and sensitive method was developed and validated for determination of doxazosin enantiomers in human plasma by liquid chromatography–tandem mass spectrometry. The enantiomers of doxazosin were extracted from plasma using ethyl ether/dichloromethane (3/2, v/v) under alkaline conditions. Baseline chiral separation was obtained within 9 min on an ovomucoid column using an isocratic mobile phase of methanol/5 mM ammonium acetate/formic acid (20/80/0.016, v/v/v) at a flow rate of 0.60 mL/min. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode, using the transitions of m/z 452 → 344 for doxazosin enantiomers, and m/z 384 → 247 for prazosin (internal standard). The method was linear in the concentration range of 0.100–50.0 ng/mL for each enantiomer using 200 μL of plasma. The lower limit of quantification (LLOQ) for each enantiomer was 0.100 ng/mL. The intra- and inter-assay precision was 5.0–11.1% and 5.7–7.6% for R-(−)-doxazosin and S-(+)-doxazosin, respectively. The accuracy was 97.4–99.5% for R-(−)-doxazosin and 96.8–102.8% for S-(+)-doxazosin. No chiral inversion was observed during the plasma storage, preparation and analysis. The method proved adequate for enantioselective pharmacokinetic studies of doxazosin after oral administration of therapeutic doses of racemic doxazosin.  相似文献   

5.
Determination of estrogens in plasma is important in evaluation of effects of some anticancer drugs, such as aromatase inhibitors. However, as reported previously, high performance liquid chromatography–radio immunoassay (HPLC–RIA) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) with chemical derivatization require complicated sample preparation. In this study, a highly sensitive and simple method for determination of estrone (E1), 17β-estradiol (E2) and estrone 3-sulfate (E1S) in human plasma has been developed. Following diethylether extraction from plasma, analytes were purified by immunosorbents and then determined by LC–MS/MS using electrospray ionization (ESI). Immunosorbents were prepared by immobilization of specific antibodies raised against each analyte onto solid support. Use of selective immunosorbents in sample preparation removed interference in plasma samples that would cause ionization suppression, and markedly improved the sensitivity of LC–MS/MS for these analytes, without derivatization. Calibration curves of each analyte showed good linearity and reproducibility over the range of 0.05–50 pg/injection for E1, 0.2–50 pg/injection for E2 and 0.05–300 pg/injection for E1S, respectively. The mean values of lower limits of quantification (LLOQ) in human plasma corrected by recovery of deuterated estrogens (internal standard, I.S.) were 0.1892 pg/mL for E1, 0.7064 pg/mL for E2 and 0.3333 pg/mL for E1S, respectively. These LLOQ values were comparable to those previous reported using HPLC–RIA and LC–MS/MS. Using this method, the normal levels of three estrogens in healthy female plasma (n = 5) were determined. The mean values of E1, E2 and E1S were 38.0 pg/mL (range 24.8–53.0), 34.3 pg/mL (22.6–46.6) and 786 pg/mL (163–2080), respectively. The immunoaffinity LC–MS/MS described here allows sensitive and accurate quantification of E1, E2 and E1S without laborious sample preparation.  相似文献   

6.
Flavanoid kaempferol is mainly present as glucuronides and sulfates in rat plasma, and small amounts of the intact aglycone are also detected. In the this study, a rapid, specific and sensitive liquid chromatography–electrospray ionization-tandem mass spectrometry method (HPLC–MS/MS) was developed and validated for determination of kaempferol and its major metabolite glucuronidated kaempferol in rat plasma. A liquid–liquid extraction with acetic ether was involved for the extraction of kaempferol and internal standard. Analytes were separated on a C18 column (150 mm × 2.1 mm, 4.5 μm, Waters Corp.) with isocratic elution at a flow-rate of 0.3 ml min−1. The mobile phase was consisted of 0.5% formic acid and acetonitrile (50:50, v/v). The Quattro Premier HPLC–MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. The method was validated according to the FDA guidelines for validation of bioanalytical method. The validated method was successfully applied to the study of the pharmacokinetics in rats after oral administration of kaempferol with different doses.  相似文献   

7.
8.
A wide variety of sulfur metabolites play important roles in plant functions. We have developed a precise and sensitive method for the simultaneous measurement of several sulfur metabolites based on liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) and 34S metabolic labeling of sulfur-containing metabolites in Arabidopsis thaliana seedlings. However, some sulfur metabolites were unstable during the extraction procedure. Our proposed method does not allow for the detection of the important sulfur metabolite homocysteine because of its instability during sample extraction. Stable isotope-labeled sulfur metabolites of A. thaliana shoot were extracted and utilized as internal standards for quantification of sulfur metabolites with LC–MS/MS using S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), glutathione (GSH), and glutathione disulfide (GSSG) as example metabolites. These metabolites were detected using electrospray ionization in positive mode. Standard curves were linear (r2 > 0.99) over a range of concentrations (SAM 0.01–2.0 μM, SAH 0.002–0.10 μM, Met 0.05–4.0 μM, GSH 0.17–20.0 μM, GSSG 0.07–20.0 μM), with limits of detection for SAM, SAH, Met, GSH, and GSSG of 0.83, 0.67, 10, 0.56, and 1.1 nM, respectively; and the within-run and between-run coefficients of variation based on quality control samples were less than 8%.  相似文献   

9.
A rapid, simple and sensitive HPLC–ESI–MS/MS method was developed for the simultaneous determination of capsaicin and dihydrocapsaicin in rat plasma. Plasma samples containing capsaicin, dihydrocapsaicin and phenacetin (internal standard) were prepared based on a simple protein precipitation by the addition of two volumes of acetonitrile. The analytes and internal standard were separated on a Zorbax SB-C18 column (3.5 μm, 2.1 mm × 100 mm) with mobile phase of acetonitrile/water (55:45, v/v) containing 0.1% formic acid (v/v) at a flow rate of 0.2 mL/min with an operating temperature of 25 °C. Quantification was performed on a triple quadrupole mass spectrometer equipped with electrospray ionization (ESI) source by selected reaction monitoring (SRM) of the transitions at m/z 306–137 for capsaicin, m/z 308–137 for dihydrocapsaicin and m/z 180–110 for the IS. Linear detection responses were obtained for capsaicin and dihydrocapsaicin ranging from 1 to 500 ng/mL and the lower limits of quantitation (LLOQs) for the two compounds were 1 ng/mL. The intra- and inter-day precisions (R.S.D.%) were within 9.79% for the two analytes, while the deviations of assay accuracies were within ±10.63%. The average recoveries of the analytes were greater than 89.88%. The analytes were proved to be stable during all sample storage, preparation and analytic procedures. The method was successfully applied to the pharmacokinetic studies of capsaicin and dihydrocapsaicin in rats after subcutaneous administration of capsaicin (natural, containing 65% capsaicin and 35% dihydrocapsaicin).  相似文献   

10.
A rapid, sensitive and simple high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method was developed for determination of cefazedone in human plasma using metronidazole as internal standard (IS). The chromatographic separation was achieved on an Ultimate XB-CN column (2.1 mm × 150 mm, 5 μm) with an isocratic mobile phase of acetonitrile and 20 mM ammonium acetate in 0.1% formic acid in water (15:85, v/v). Detection was performed using electrospray ionization in positive ion multiple reaction-monitoring mode (SRM), monitoring the transitions m/z 548.2 → 344.1 for cefazedone and m/z 172.2 → 128.1 for IS. Calibration curves were linear over a wide range of 0.20–401.12 μg/mL for cefazedone in plasma. The lower limit of quantification (LLOQ) was 0.20 μg/mL. The intra- and inter-day precisions were less than 7.2%. The average recovery of cefazedone was 90.8–91.0%. The validated method was successfully applied to the pharmacokinetic study of cefazedone in Chinese healthy volunteers following intravenous (IV) administration of 500, 1000 and 2000 mg cefazedone injection.  相似文献   

11.
A rapid and selective high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method for simultaneous determination of isoniazid (INH), rifampicin (RFP) and levofloxacin (LVX) in mouse tissues and plasma has been developed and validated, using gatifloxacin as the internal standard (I.S.). The compounds and I.S. were extracted from tissue homogenate and plasma by a protein precipitation procedure with methanol. The HPLC separation of the analytes was performed on a Welch materials C4 column (250 mm × 4.6 mm, 5.0 μm, USA) at 25 °C, using a gradient elution program with the initial mobile phase constituting of 0.05% formic acid and methanol (93:7, v/v) at a flow-rate of 1.0 ml/min. For all the three analytes, the recoveries varied between 83.3% and 98.8% in tissues and between 75.5% and 90.8% in plasma, the accuracies ranged from 91.7% to 112.0% in tissues and from 94.6% to 108.8% in plasma, and the intra- and inter-day precisions were less than 13.3% in tissues and less than 8.2% in plsama. Calibration ranges for INH were 0.11–5.42 μg/g in tissues and 0.18–9.04 μg/ml in plasma, for RFP were 0.12–1200 μg/g in tissues and 4.0–200 μg/ml in plasma, and for LVX were 0.13–26.2 μg/g in tissues and 0.09–4.53 μg/ml in plasma. The lower limits of quantification (LLOQs) for INH, RFP and LVX in mouse tissues were 0.11, 0.12 and 0.13 μg/g and for those in mouse plasma were 18.1, 20.0 and 21.8 ng/ml, respectively. The limits of detection (LODs) for INH, RFP and LVX in mouse tissues were 0.04, 0.05 and 0.05 μg/g and for those in mouse plasma were 5.5, 6.0 and 6.6 ng/ml, respectively. The established method was successfully applied to simultaneous determination of isoniazid, rifampicin and levofloxacin in mouse plasma and different mouse tissues.  相似文献   

12.
A selective, sensitive, and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of aripiprazole and its active metabolite dehydroaripiprazole in human plasma has been developed using papaverine as internal standard (IS). LC-MS/MS analysis was carried out on a Finnigan LC-TSQ Quantum mass spectrometer using positive ion electrospray ionization (ESI+) and selected reaction monitoring (SRM). The assays for aripiprazole and dehydroaripiprazole were linear over the ranges of 0.1 to 600 ng/ml and 0.01 to 60 ng/ml, respectively. The average recoveries in plasma samples both were better than 85%. The intra- and interrun precision and accuracy values were found to be within the assay variability criteria limits according to the US Food and Drug Administration guidelines. The developed method was proved to be suitable for use in a clinical pharmacokinetic study after a single oral administration of a 5-mg aripiprazole tablet in healthy Chinese volunteers.  相似文献   

13.
A simple, fast and validated method is reported for the simultaneous analysis, in human plasma, of several drugs usually combined in cardiovascular therapy (atenolol, bisoprolol, hydrochlorothiazide, chlorthalidone, salicylic acid, enalapril and its active metabolite enalaprilat, valsartan and fluvastatin) using high performance liquid chromatography–tandem mass spectrometry (LC–MS/MS) with electrospray ionization (ESI), working in multiple reaction monitoring mode (MRM). Separation of analytes and internal standard (pravastatin) was performed on a Luna C18(2) (150 mm × 4.6 mm, 3 μm) column using a gradient elution mode with a run time of 15 min. The mobile phase consisted of a mixture of acetonitrile and water containing 0.01% formic acid and 10 mM ammonium formate at pH 4.1. Sample treatment consisted of a simple protein precipitation with acetonitrile, enabling a fast analysis. The method showed good linearity, precision (RSD% values between 0.7% and 12.7%) and accuracy (relative error values between 0.9% and 14.0%). Recoveries were within 68–106% range and the ion-suppression was not higher than 22% for any analyte. The method was successfully applied to plasma samples obtained from patients under combined cardiovascular treatment.  相似文献   

14.
An improved method for determining levels of levosulpiride in human plasma using ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was developed and validated. The protein precipitation method was used for plasma sample preparation. Levosulpiride and an internal standard (IS) were isocratically separated on a UPLC BEH C18 column with a mobile phase of ammonium formate buffer (1 mM, adjusted to pH 3 with formic acid) and acetonitrile (60:40, v/v). MS/MS detection was performed by monitoring the parent → daughter pair of levosulpiride and the IS at m/z 342 → 112 and 329 → 256, respectively. The method was linear from 2.5 to 200 ng/mL and exhibited acceptable precision and percent recovery. The method was successfully demonstrated in pharmacokinetic and bioequivalence studies of two levosulpiride oral formulations administered to healthy volunteers. When compared to the previous LC–MS methods, the proposed method is faster, well-validated, and uses lesser plasma volume and a similar sensitivity. The use of UPLC allowed rapid and sensitive quantification of levosulpiride, making this method suitable for high-throughput clinical applications.  相似文献   

15.
A simple, sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the simultaneous determination of m-nisoldipine and its three metabolites in rat plasma has been developed using nitrendipine as an internal standard (IS). Following liquid–liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse phase C18 column and analyzed by MS in the multiple reaction monitoring (MRM) mode. To avoid contamination by residual sample in the injection syringe, a special injection protocol was developed. We found that m-nisoldipine, metabolite M1 and IS could be ionized under positive or negative electrospray ionization conditions, whereas metabolite M and M2 could only be ionized in the positive mode. The mass spectrometry fragmentation pathways for these analytes are analyzed and discussed herein. The total analysis time required less than 5 min per sample. We employed this method successfully to study the metabolism of m-nisoldipine when it was orally administered to rats at a dose of 9 mg/kg. Three metabolites of m-nisoldipine and an unknown compound of molecular weight 386 were found for the first time in rat plasma. The concentration of the potentially active metabolite was approximately equal to its parent compound concentration.  相似文献   

16.
A high-performance liquid chromatographic method is described for determination of sub-anaesthetic concentrations of the enantiomers of ketamine and its metabolite norketamine in plasma. The samples are purified by reversed-phase solid-phase extraction. The enantiomers are separated on a Chiral AGP column with a mobile phase containing 16% methanol and a 10 mM phosphate buffer at pH 7.0, and measured by UV-detection at a wavelength of 220 nm. Linear calibration curves with correlation coefficients better than 0.995 have been obtained in the range 10–320 ng/ml. Minimum detectable concentrations were about 2 ng/ml.  相似文献   

17.
A high-performance liquid chromatography tandem mass spectrometry (HPLC–MS/MS) method employing electrospray ionization (ESI) has been developed for simultaneous determination of lancemaside A (3-O-β-d-glucuronopyranosyl-3β, 16α-dihydroxyolean-12-en-28-oic acid 28-O-β-d-xylopyranosyl(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl ester) and its metabolites in mouse plasma. When lancemaside A (60 mg/kg) was orally administered to mice, echinocystic acid was detected in the blood. Tmax and Cmax of the echinocystic acid were 6.5 ± 1.9 h and 56.7 ± 29.1 ppb. Orally administered lancemaside A was metabolized to lancemaside X (3β, 16α-dihydroxyolean-12-en-28-oic acid 28-O-β-d-xylopyranosyl(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl ester) by intestinal microflora in mice, which was metabolized to echinocystic acid by intestinal microflora and/or intestinal tissues. Human intestinal microflora also metabolized lancemaside A to echinocystic acid via lancemaside X. These results suggest that the metabolism by intestinal microflora may play an important role in pharmacological effects of orally administered lancemaside A.  相似文献   

18.
A method for the quantitative analysis of cudratricusxanthone B (CXB) in rat plasma by high performance liquid chromatography–electrospray ionization-tandem mass spectrometry (HPLC–ESI-MS/MS) has been developed and validated. The method involved liquid–liquid extraction from plasma, simple chromatographic conditions on a Venusil XBP-PH C18 column with the mobile phase of 0.5% formic acid in methanol, and mass spectrometric detection using an API-3000 instrument. Multiple reaction monitoring (MRM) mode was used to monitor precursor/product ion transitions of m/z 397.1/285.0 for CXB and m/z 381.6/269.2 for the internal standard (I.S.) cudraxanthone H. The standard curves were linear over the concentration range of 1–500 ng/mL for CXB in rat plasma. The intra- and inter-batch accuracy for CXB at four concentrations was 89.4–99.5% and 89.4–100.8%, respectively. The RSDs were less than 7.92%. The lower limit of quantification for CXB was 1.0 ng/mL using 100 μL of plasma. The average extraction recoveries of CXB ranged from 80.1 to 95.4% at the concentrations of 2, 50 and 500 ng/mL, respectively. This method was successfully applied to the pharmacokinetic study after an intravenous administration of CXB in male Sprague–Dawley (SD) rats.  相似文献   

19.
A rapid, sensitive and specific method for the determination of cepharanthine in human plasma using high performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS) was described. Cepharanthine and the internal standard (I.S.), telmisartan, were extracted from human plasma by methanol to precipitate the protein. A centrifuged upper layer was then evaporated and reconstituted with 100 μL methanol. Chromatographic separation was performed on an AGILENT XDB-C8 column (150 mm × 2.1 mm, 5.0 μm, Agilent, USA) using a gradient mobile phase with 1 mmol/L ammonium acetate in water with 0.05% formic acid and methanol. Detection and quantitation was performed by MS/MS using electrospray ionization (ESI) and multiple reaction monitoring (MRM) in the positive ion mode. The most intense [M+H]+ MRM transition of cepharanthine at m/z 607.3 → 365.3 was used for quantitation and the transition at m/z 515.5 → 276.4 was used to monitor telmisartan. The calibration curve was linear within the concentration range of 0.5–200.0 ng/mL (= 0.9994). The limit of quantification (LOQ) was 0.5 ng/mL. The extraction recovery was above 81.1%. The accuracy was higher than 92.3%. The intra- and inter-day precisions were less than 9.66%. The method was accurate, sensitive and simple and was successfully applied to a pharmacokinetic study after single intravenous administration of 50 mg cepharanthine in 12 healthy Chinese volunteers.  相似文献   

20.
d-Serine is an endogenous modulator of N-methyl-d-aspartate (NMDA) receptors. Plasma concentrations of d-serine and the ratio of d-serine to total serine may be used as clinically-translatable biomarkers in NMDA receptor-related disease. We developed a highly sensitive and specific method using high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) for the simultaneous determination of the d- and l-isomers of serine in human plasma. Since d- and l-serine are endogenous components, phosphate buffered saline was used as the surrogate matrix. d- and l-serine in human plasma and PBS were treated by cationic exchange solid phase extraction. d-Serine (m/z 106.1 > 60.0), l-serine (m/z 106.1 > 60.1) and dl-serine-d3 (m/z 109.1 > 63.0) were detected using a multiple reaction monitoring. The enantiomer separation of d- and l-serine was successfully achieved without any derivatization step using tandemly-arranged and ice-cold CROWNPAK CR-I(+) columns with an isocratic mobile phase comprised of 0.3% trifluoroacetic acid in 10% acetonitrile. The standard curves were linear throughout the calibration range with 0.01–10 μg/mL (d-serine) and 0.1–100 μg/mL (l-serine), respectively. Intra-day and inter-day precision and accuracy of the quality control samples were within relative standard deviations of less than 15%. The endogenous concentrations of d- and l-serine in human plasma were 0.124–0.199 and 7.97–13.1 μg/mL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号