首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Loka RS  Cairo CW 《Carbohydrate research》2010,345(18):2641-2647
The detection of carbohydrate-protein interactions is often performed using techniques that require surface immobilization of the lectin or the glycan. A commonly used assay for lectin binding is surface plasmon resonance (SPR). We describe an implementation of the Staudinger ligation as a method to immobilize carbohydrate epitopes to a biosensor surface. This was accomplished by first introducing an azide functionality to a carboxymethyldextran surface, followed by reaction with a phosphane-modified carbohydrate ligand. The chemistry employed is extremely mild and was easily adapted to a commercial biosensor system. Using this approach, we investigated the binding of jacalin and wheat germ agglutinin (WGA) to galactose, lactose, and N-acetyl-lactosamine. We observed that WGA binding shows evidence of multivalent interaction with the surface. Additionally, we found that jacalin binding was influenced by the presence of a flexible and hydrophobic galactosyl aglycone.  相似文献   

2.
Lambert B  Buckle M 《FEBS letters》2006,580(1):345-350
We have used surface plasmon resonance to quantify the kinetics and stoichiometry of the interaction between p53 and nucleophosmin (NPM). Domains characterising the interface between the two proteins were identified by chemical cross-linking, proteolytic digestion and mass spectrometry based peptide mapping.We show that the C-terminal domain of NPM (residues 242-269) interacts with two regions of p53 (residues 175-196 and residues 343-363) which belong, respectively, to the DNA binding domain and the tetramerisation domain. Potential biological consequences of such interactions are discussed.  相似文献   

3.
Suzuki Y  Win OY  Koga Y  Takano K  Kanaya S 《FEBS letters》2005,579(25):5781-5784
SIB1 FKBP22 is a homodimer, with each subunit consisting of the C-terminal catalytic domain and N-terminal dimerization domain. This protein exhibits peptidyl prolyl cis-trans isomerase activity for both peptide and protein substrates. However, truncation of the N-terminal domain greatly reduces the activity only for a protein substrate. Using surface plasmon resonance, we showed that SIB1 FKBP22 loses the binding ability to a folding intermediate of protein upon truncation of the N-terminal domain but does not lose it upon truncation of the C-terminal domain. We propose that the binding site of SIB1 FKBP22 to a protein substrate of PPIase is located at the N-terminal domain.  相似文献   

4.
EGF-induced activation of EGFR tyrosine kinase is known to be inhibited by ganglioside GM3, its dimer, and other mimetics. However, details of the interaction, such as kinetic properties, have not yet been clarified. The direct interaction is now defined by the surface plasmon resonance (SPR) technique. To determine the affinity of EGFR for lyso-GM3 or lyso-GM3 mimetic, these glycolipid ligands were covalently immobilized onto a sensor chip, and binding affinities were investigated. Results of these studies confirmed the direct interaction of lyso-GM3 or its mimetic with EGFR. A strong interaction between EGFR and lyso-GM3 or its mimetic was indicated by increased binding of EGFR to glycolipid-immobilized surface, in an EGFR dose-dependent manner.  相似文献   

5.
The mycobacterial lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), regulate host defence mechanisms through their interaction with pattern recognition receptors such as Toll-like receptors (TLRs). We have developed a surface plasmon resonance assay to analyse the molecular basis for the recognition of Mycobacterium kansasii LM or LAM, by immobilized CD14 and LPS-binding protein (LBP) both being capable to promote presentation of bacterial glycolipids to TLRs. The affinity of either LM/LAM was higher to CD14 than to LBP. Kinetic and Scatchard analyses were consistent with a model involving a single class of binding sites. These interactions required the lipidic anchor, but not the carbohydrate domains, of LM or LAM. We also provide evidence that addition of recombinant LBP enhanced the stimulatory effect of LM or LAM on matrix metalloproteinase-9 expression and secretion in macrophages, through a TLR1/TLR2-dependent mechanism.  相似文献   

6.
We attempted to evaluate the affinity of the anionic phospholipids to cytochrome c by means of surface plasmon resonance (SPR) technique and to correlate it with the cytochrome c active site alterations and peroxidase activity. Our experiments showed a strong interdependence between the phospholipid fatty acid saturation degree, the active site structure alterations and peroxidase activity of the cytochrome c phospholipid complex. Cytochrome c peroxidase activity and Trp59 fluorescence increase in the sequence of phosphatidyl choline (PC) → phosphatidylserine (PS) → cardiolipin (CL) → phosphatidic acid (PA). The association constant (Ka) increased in the sequence PC → PA → PS → CL. The SPR spectroscopy data shows that Ka is independent of lipid saturation degree, but correlates with phospholipid negative charge value.  相似文献   

7.
Jun Tsukahara 《FEBS letters》2009,583(18):2987-2990
Lipoproteins of Escherichia coli are sorted to the outer membrane through a pathway composed of five Lol proteins. LolA transports lipoproteins released from the inner membrane by LolCDE to LolB on the outer membrane via the periplasm. Interaction between LolA and LolB was speculated to be strong when LolA binds lipoprotein. However, due to a lack of a sensitive method, the kinetics of this reaction have not been examined in detail. We report here the detection of lipoprotein transfer in real time by means of surface plasmon resonance. The kinetic parameters of lipoprotein transfer were determined with wild-type LolA and a mutant defective in it.

Structured summary

MINT-7259948: mlolB (uniprotkb:P61320) binds (MI:0407) to pal (uniprotkb:P0A912) by surface plasmon resonance (MI:0107)  相似文献   

8.
We have studied ‘food grade’ sialyloligosaccharides (SOS) as anti-adhesive drugs or receptor analogues, since the terminal sialic acid residue has already been shown to contribute significantly to the adhesion and pathogenesis of the Vibrio cholerae toxin (Ctx). GM1-oligosaccharide (GM1-OS) was immobilized into a supporting POPC lipid bilayer onto a surface plasmon resonance (SPR) chip, and the interaction between uninhibited Ctx and GM1-OS-POPC was measured. SOS inhibited 94.7% of the Ctx binding to GM1-OS-POPC at 10 mg/mL. The SOS EC50 value of 5.521 mg/mL is high compared with 0.2811 μg/mL (182.5 ρM or 1.825 × 10−10 M) for GM1-OS. The commercially available sialyloligosaccharide (SOS) mixture Sunsial E® is impure, containing one monosialylated and two disialylated oligosaccharides in the ratio 9.6%, 6.5% and 17.5%, respectively, and 66.4% protein. However, these inexpensive food-grade molecules are derived from egg yolk and could be used to fortify conventional food additives, by way of emulsifiers, sweeteners and/or preservatives. The work further supports our hypothesis that SOS could be a promising natural anti-adhesive glycomimetic against Ctx and prevent subsequent onset of disease.  相似文献   

9.
The role of electrostatic interactions in the assembly of a native protein structure was studied using fragment complementation. Contributions of salt, pH, or surface charges to the kinetics and equilibrium of calbindin D(9k) reconstitution was measured in the presence of Ca(2+) using surface plasmon resonance and isothermal titration calorimetry. Whereas surface charge substitutions primarily affect the dissociation rate constant, the association rates are correlated with subdomain net charge in a way expected for Coulomb interactions. The affinity is reduced in all mutants, with the largest effect (260-fold) observed for the double mutant K25E+K29E. At low net charge, detailed charge distribution is important, and charges remote from the partner EF-hand have less influence than close ones. The effects of salt and pH on the reconstitution are smaller than mutational effects. The interaction between the wild-type EF-hands occurs with high affinity (K(A) = 1.3 x 10(10) M(-1); K(D) = 80 pM). The enthalpy of association is overall favorable and there appears to be a very large favorable entropic contribution from the desolvation of hydrophobic surfaces that become buried in the complex. Electrostatic interactions contribute significantly to the affinity between the subdomains, but other factors, such as hydrophobic interactions, dominate.  相似文献   

10.
Calmodulin (CaM) is a ubiquitous second messenger protein that regulates a variety of structurally and functionally diverse targets in response to changes in Ca2+ concentration. CaM-dependent protein kinase II (CaMKII) and calcineurin (CaN) are the prominent CaM targets that play an opposing role in many cellular functions including synaptic regulation. Since CaMKII and CaN compete for the available Ca2+/CaM, the differential affinity of these enzymes for CaM is crucial for achieving a balance in Ca2+ signaling. We used the computational protein design approach to modify CaM binding specificity for these two targets. Starting from the X-ray structure of CaM in complex with the CaM-binding domain of CaMKII, we optimized CaM interactions with CaMKII by introducing mutations into the CaM sequence. CaM optimization was performed with a protein design program, ORBIT, using a modified energy function that emphasized intermolecular interactions in the sequence selection procedure. Several CaM variants were experimentally constructed and tested for binding to the CaMKII and CaN peptides using the surface plasmon resonance technique. Most of our CaM mutants demonstrated small increase in affinity for the CaMKII peptide and substantial decrease in affinity for the CaN peptide compared to that of wild-type CaM. Our best CaM design exhibited an about 900-fold increase in binding specificity towards the CaMKII peptide, becoming the highest specificity switch achieved in any protein-protein interface through the computational protein design approach. Our results show that computational redesign of protein-protein interfaces becomes a reliable method for altering protein binding affinity and specificity.  相似文献   

11.
A novel biopolymer-based antioxidant, chitosan conjugated with gallic acid (chitosan galloylate, chitosan-GA), is proposed. Electron paramagnetic resonance (EPR) demonstrates a wide range of antioxidant activity for chitosan-GA as evidenced from its reactions with oxidizing free radicals, that is, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), horseradish peroxidase (HRP)-H2O2, carbon-centered alkyl radicals, and hydroxyl radicals. The EPR spectrum of the radical formed on chitosan-GA was attributed to the semiquinone radical of the gallate moiety. The stoichiometry and effective concentration (EC50) of the DPPH free radical with chitosan-GA show that the radical scavenging capacity is maintained even after thermal treatment at 100 °C for an hour. Although the degree of substitution of GA on chitosan was about 15%, its antioxidant capacity, that is, the reaction with carbon-centered and hydroxyl radicals, is comparable to that of GA.  相似文献   

12.
N-Acetyl-l-glutamate kinase (NAGK) catalyzes the first committed step in arginine biosynthesis in organisms that perform the cyclic pathway of ornithine synthesis. In eukaryotic and bacterial oxygenic phototrophs, the activity of NAGK is controlled by the PII signal transduction protein. Recent X-ray analysis of NAGK-PII complexes from a higher plant (Arabidopsis thaliana) and a cyanobacterium (Synechococcus elongatus) revealed that despite several differences, the overall structure of the complex is highly similar. The present study analyzes the functional conservation of PII-mediated NAGK regulation in plants and cyanobacteria to distinguish between universal properties and those that are specific for the different phylogenetic lineages. This study shows that plant and cyanobacterial PII proteins can mutually regulate the NAGK enzymes across the domains of life, implying a high selective pressure to conserve PII-NAGK interaction over more than 1.2 billion years of separate evolution. The non-conserved C-terminus of S. elongatus NAGK was identified as an element, which strongly enhances arginine inhibition and is responsible for most of the differences between S. elongatus and A. thaliana NAGK with respect to arginine sensitivity. Both PII proteins relieve arginine inhibition of NAGK, and in both lineages, PII-mediated relief from arginine inhibition is antagonized by 2-oxoglutarate. Together, these properties highlight the conserved role of PII as a signal integrator of the C/N balance sensed as 2-oxoglutarate to regulate arginine synthesis in oxygenic phototrophs.  相似文献   

13.
A chip-based biosensor technology using surface plasmon resonance (SPR) was developed for studying the interaction of ligands and G protein-coupled receptors (GPCRs). GPCRs, the fourth largest superfamily in the human genome, are the largest class of targets for drug discovery.We have expressed the three subtypes of α2-adrenergic receptor (α2-AR), a prototypical GPCR as functional fusion proteins in baculovirus-infected insect cells. The localization of the expressed receptor was observed in intracellular organelles, as detected by eGFP fluorescence. In addition, the deletion mutants of α2B-AR, with a deletion in the 3rd intracellular loop, exhibited unaltered Kd values and enhanced stability, thus making them more promising candidates for crystallization. SPR demonstrated that small molecule ligands can bind the detergent-solubilized receptor, thus proving that α2-AR is active even in a lipid-free environment. The Kd values obtained from the biosensor analysis and traditional ligand binding studies correlate well with each other. This is the first demonstration of the binding of a small molecule to the detergent-solubilized state of α2-ARs and interaction of low-molecular mass-ligands in real time in a label-free environment. This technology will also allow the development of high throughput platform for screening a large number of compounds for generation of leads.  相似文献   

14.
Interaction of Vicia villosa agglutinin-B4 (VVA-B4) to glycopeptides with O-linked GalNAc residues was investigated by surface plasmon resonance. The affinity was shown to be influenced by the arrangement of O-glycosylation sites on a peptide, PTTTPITTTTK, representing the tandem repeat of MUC2. The association rate constant was relatively high with a particular category of GalNAc-peptides in which more than three amino acid residues were placed between GalNAc-Thr residues. PTTTPITTTTK (T indicates GalNAc-Thr) had the highest association rate constant among the glycopeptides tested. The dissociation rate constant was low in the peptides containing consecutive GalNAc residues and PTTTPITTTTK was the lowest of the glycopeptides tested. Dissociation constant (KD), calculated as kd/ka was the lowest with PTTTPITTTTK. Therefore, the arrangement but not the quantity of GalNAc residues apparently determines the affinity between VVA-B4 and peptides with attached GalNAc residues.  相似文献   

15.
Amphidinols (AMs) are a group of dinoflagellate metabolites with potent antifungal activity. As is the case with polyene macrolide antibiotics, the mode of action of AMs is accounted for by direct interaction with lipid bilayers, which leads to formation of pores or lesions in biomembranes. However, it was revealed that AMs induce hemolysis with significantly lower concentrations than those necessary to permeabilize artificial liposomes, suggesting that a certain factor(s) in erythrocyte membrane potentiates AM activity. Glycophorin A (GpA), a major erythrocyte protein, was chosen as a model protein to investigate interaction between peptides and AMs such as AM2, AM3 and AM6 by using SDS-PAGE, surface plasmon resonance, and fluorescent-dye leakages from GpA-reconstituted liposomes. The results unambiguously demonstrated that AMs have an affinity to the transmembrane domain of GpA, and their membrane-permeabilizing activity is significantly potentiated by GpA. Surface plasmon resonance experiments revealed that their interaction has a dissociation constant of the order of 10 μM, which is significantly larger than efficacious concentrations of hemolysis by AMs. These results imply that the potentiation action by GpA or membrane integral peptides may be due to a higher affinity of AMs to protein-containing membranes than that to pure lipid bilayers.  相似文献   

16.
Direct electron transfer (DET) from bare spectrographic graphite (SPGE) or 3-mercaptopropionic acid-modified gold (MPA-gold) electrodes to Trachyderma tsunodae bilirubin oxidase (BOD) was studied under anaerobic and aerobic conditions by cyclic voltammetry and chronoamperometry. On cyclic voltammograms nonturnover Faradaic signals with midpoint potentials of about 700 mV and 400 mV were clearly observed corresponding to redox transformations of the T1 site and the T2/T3 cluster of the enzyme, respectively. The immobilized BOD was differently oriented on the two electrodes and its catalysis of O2-electroreduction was also massively different. On SPGE, where most of the enzyme was oriented with the T1 copper site proximal to the carbon with a quite slow ET process, well-pronounced DET-bioelectroreduction of O2 was observed, starting already at > 700 mV vs. NHE. In contrast, on MPA-gold most of the enzyme was oriented with its T2/T3 copper cluster proximal to the metal. Indeed, there was little DET-based catalysis of O2-electroreduction, even though the ET between the MPA-gold and the T2/T3 copper cluster of BOD was similar to that observed for the T1 site at SPGE. When BOD actively catalyzes the O2-electroreduction, the redox potential of its T1 site is 690 mV vs. NHE and that of one of its T2/T3 copper centers is 390 mV vs. NHE. The redox potential of the T2/T3 copper cluster of a resting form of BOD is suggested to be about 360 mV vs. NHE. These values, combined with the observed biocatalytic behavior, strongly suggest an uphill intra-molecular electron transfer from the T1 site to the T2/T3 cluster during the catalytic turnover of the enzyme.  相似文献   

17.
Ultraviolet-C (UVC) irradiation is a pathogen inactivation method used for disinfection of pharmaceutical products derived from human blood. Previous studies have shown that UVC can potentially damage proteins through photolysis or can generate reactive species resulting in protein thiol oxidation. In this study, two fluorescence-based quantitative proteomic approaches were used to assess the effects of a novel UVC-disinfection strategy on human plasma fractions. We show minimal changes in protein content, but gross alterations in protein thiol reactivity, indicative of oxidative damage. We identify a number of the damaged proteins by mass spectrometry, including serum amyloid P component, and further demonstrate UVC-induced photolysis of its disulphide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号