首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of charge-based variants by mass spectrometry (MS) is required for the analytical development of a new biologic entity and its marketing approval by health authorities. However, standard peak-based data analysis approaches are time-consuming and biased toward the detection, identification, and quantification of main variants only. The aim of this study was to characterize in-depth acidic and basic species of a stressed IgG1 monoclonal antibody using comprehensive and unbiased MS data evaluation tools. Fractions collected from cation ion exchange (CEX) chromatography were analyzed as intact, after reduction of disulfide bridges, and after proteolytic cleavage using Lys-C. Data of both intact and reduced samples were evaluated consistently using a time-resolved deconvolution algorithm. Peptide mapping data were processed simultaneously, quantified and compared in a systematic manner for all MS signals and fractions. Differences observed between the fractions were then further characterized and assigned. Time-resolved deconvolution enhanced pattern visualization and data interpretation of main and minor modifications in 3-dimensional maps across CEX fractions. Relative quantification of all MS signals across CEX fractions before peptide assignment enabled the detection of fraction-specific chemical modifications at abundances below 1%. Acidic fractions were shown to be heterogeneous, containing antibody fragments, glycated as well as deamidated forms of the heavy and light chains. In contrast, the basic fractions contained mainly modifications of the C-terminus and pyroglutamate formation at the N-terminus of the heavy chain. Systematic data evaluation was performed to investigate multiple data sets and comprehensively extract main and minor differences between each CEX fraction in an unbiased manner.  相似文献   

2.
Asparagine (Asn) deamidation and aspartic acid (Asp) isomerization are spontaneous and common alterations occurring in pharmaceutical protein drugs in solution. Because those reactions may cause functional changes, it is important to identify the product-related substances, especially when biopharmaceuticals are under development. In this study, we used H(2)(18)O to identify Asn deamidation and Asp isomerization sites on a recombinant humanized monoclonal antibody (mAb) by using high-performance liquid chromatography-mass spectrometry (HPLC-MS). This strategy takes advantage of reactions whereby (18)O is incorporated into the protein molecule. The mAb was lyophilized and reconstituted in H(2)O or H(2)(18)O, followed by incubation at 50 degrees C for 1 month. Samples were reduced/carboxymethylated and digested by trypsin and then subjected to HPLC-MS and HPLC-tandem mass spectrometry (MS/MS) analysis. Among all of the peptide fragments analyzed, there were two in which deamidation and/or isomerization was observed. In one peptide fragment, an obvious mass shift ( approximately 3Da) at Asn was observed in the newly produced peptide when the mAb was incubated in H(2)(18)O, whereas it was barely feasible to identify this mass shift in H(2)O. In the other peptide fragment, isomerization of Asp was identified after incubation in H(2)(18)O, although it was impossible to distinguish when using H(2)O. By means of this procedure, identification of deamidation and isomerization sites can be accomplished easily even when they are difficult or impossible to detect by the usual peptide mapping.  相似文献   

3.
Sequence variants, also known as unintended amino acid substitutions in the protein primary structure, are one of the critical quality attributes needed to be monitored during process development of monoclonal antibodies (mAbs). Here we report on analytical methods for detection and identification of a sequence variant in an IgG1 mAb expressed in Chinese hamster ovary (CHO) cells. The presence of the sequence variant was detected by an imaged capillary isoelectric focusing (ICIEF) assay, showing a new basic species in mAb charge variant profile. The new basic variant was fractionated and enriched by ion-exchange chromatography, analyzed by reduced light and heavy chain mass determination, and characterized by HPLC-UV/MS/MS of tryptic and endoproteinase Lys-C peptide maps. A Serine to Arginine sequence variant was identified at the heavy chain 441 position (S441R), and confirmed by using synthetic peptides. The relative level of the S441R variant was estimated to be in the range of 0.3-0.6% for several mAb batches analyzed via extracted ion chromatogram (EIC). This work demonstrates the effectiveness of using integrated analytical methods to detect and identify protein heterogeneity and the importance of monitoring product quality during mAb bioprocess development.  相似文献   

4.
The biological function of the post-translationally methylated amino acid gamma-N-methylasparagine (gamma-NMA) in proteins is unknown. We are examining the premise that amide methylation protects against deamidation. The free amino acids Asn, gamma-NMA, Gln, and delta-N-methylglutamine (delta-NMG) were incubated at elevated temperature and a variety of pH conditions to assay for deamidation. Gln disappears 12- to 14-fold more rapidly than delta-NMG, and Asn hydrolyzes to Asp and NH3 as expected. However, the gamma-NMA deamidation rate is severely overestimated by simply measuring the disappearance of starting material because gamma-NMA undergoes a cyclization reaction in preference to deamidation. At pH 1 the predominant gamma-NMA reaction is formation of stable 3-amino-N-methylsuccinimide (NMS) and this occurs greater than 10-fold faster than Asn deamidation. At pH 4.0, 7.4, and 9.0 NMS is readily formed but it is unstable and partitions between the parent compound, gamma-NMA, and a second species, alpha-N-methylasparagine. At pH 7.4 and 9.0 gamma-NMA disappears 4-fold slower than Asn but the methyl amide hydrolysis rate is diminished by as much as 13-fold. The Asn incubations over the pH range 1-9 yield scant evidence of a succinimide intermediate. It is concluded that the amide methylation provides a unique reaction pathway and stabilization for the N-methylsuccinimide species. Amino acid analysis by o-phthalaldehyde postcolumn reaction fails to detect isoasparagine, alpha-N-methylasparagine, and NMS. Amino acid analysis by precolumn derivatization with phenyl isothiocyanate destroys NMS and therefore cannot quantitate this compound. The ninhydrin postcolumn derivatization method is able to detect and quantitate all of these amino acid species.  相似文献   

5.
Identification of asparagine (Asn) sites that are prone to deamidation is critical for the development of therapeutic monoclonal antibodies (mAbs). Despite a common chemical degradation pathway, the rates of Asn deamidation can vary dramatically among different sites, and prediction of the sensitive deamidation sites is still challenging. In this study, characterization of Asn deamidation for five IgG1 and five IgG4 mAbs under both normal and stressed conditions revealed dramatic differences in the Asn deamidation rates. A comprehensive analysis of the deamidation sites indicated that the deamidation rate differences could be explained by differences in the local structure conformation, structure flexibility and solvent accessibility. A decision tree was developed to predict the deamidation propensity for all Asn sites in IgG mAbs based on the analysis of these three structural parameters. This decision tree will allow potential Asn deamidation hot spots to be identified early in development.  相似文献   

6.
A method was established for evaluating Asn deamidation and Asp isomerization/racemization. To detect the subtle changes in mass that accompany these chemical modifications, we used a combination of enzyme digestion by endoproteinase Asp-N, which selectively cleaves the N-terminus of L-alpha-Asp, and MALDI/TOF-mass spectrometry. To achieve better resolution, we employed digests of (15)N-labeled protein as an internal standard. To demonstrate the advantages of this method, we applied it to identify deamidated sites in mutant lysozymes in which the Asn residue is mutated to Asp. We also identified the deamidation or isomerization site of the lysozyme samples after incubating them under acidic or basic conditions.  相似文献   

7.
Seven forms of a therapeutic recombinant antibody that binds to the her2/neu gene product were resolved by cation-exchange chromatography. Structural differences were assigned by peptide mapping and HIC after papain digestion. Deamidation of light chain asparagine 30 to aspartate in one or both light chains is responsible for two acidic forms. A low potency form is due to isomerization of heavy chain aspartate 102; the Asp102 succinimide is also present in a basic peak fraction. Forms with both Asn30 deamidation and Asp102 isomerization modifications were isolated. Deamidation of heavy chain Asn55 to isoaspartate was also detected. Isoelectric focusing in a polyacrylamide gel was used to verify the assignments. All modifications were found in complementarity determining regions.  相似文献   

8.
Although deamidation at asparagine and glutamine has been found in numerous studies of a variety of proteins, in almost all cases the analytical methodology that was used could detect only a single site of deamidation. For the extensively studied case of reduced bovine ribonuclease A (13,689 Da), only Asn67 deamidation has been demonstrated previously, although one study found three monodeamidated fractions. Here top down tandem mass spectrometry shows that Asn67 deamidation is extensive before Asn71 and Asn94 react; these are more than half deamidated before Asn34 reacts, and its deamidation is extensive before that at Gln74 is initiated. Except for the initial Asn67 site, these large reactivity differences correlate poorly with neighboring amino acid identities and instead indicate residual conformational effects despite the strongly denaturing media that were used; deamidation at Asn67 could enhance that at Asn71, and these enhance that at Gln74. This success in the site-specific quantitation of deamidation in a 14 kDa protein mixture, despite the minimal 1 Da (-NH2 --> -OH) change in the molecular mass, is further evidence of the broad applicability of the top down MS/MS methodology for characterization of protein posttranslational modifications.  相似文献   

9.
Protective antigen (PA) is a central virulence factor of Bacillus anthracis and a key component in anthrax vaccines. PA binds to target cell receptors, is cleaved by the furin protease, self-aggregates to heptamers, and finally internalizes as a complex with either lethal or edema factors. Under mild room temperature storage conditions, PA cytotoxicity decreased (t(1/2) approximately 7 days) concomitant with the generation of new acidic isoforms, probably through deamidation of Asn residues. Ranking all 68 Asn residues in PA based on their predicted deamidation rates revealed five residues with half-lives of <60 days, and these residues were further analyzed: Asn10 in the 20-kDa region, Asn162 at P6 vicinal to the furin cleavage site, Asn306 in the pro-pore translocation loop, and both Asn713 and Asn719 in the receptor-binding domain. We found that PA underwent spontaneous deamidation at Asn162 upon storage concomitant with decreased susceptibility to furin. A panel of model synthetic furin substrates was used to demonstrate that Asn162 deamidation led to a 20-fold decrease in the bimolecular rate constant (k(cat)/Km) of proteolysis due to the new negatively charged residue at P6 in the furin recognition sequence. Furthermore, reduced PA cytotoxicity correlated with a decrease in PA cell binding and also with deamidation of Asn713 and Asn719. On the other hand, neither deamidation of Asn10 or Asn306 nor impairment of heptamerization could be observed upon prolonged PA storage. We suggest that PA inactivation during storage is associated with susceptible deamidation sites, which are intimately involved in both mechanisms of PA cleavage by furin and PA-receptor binding.  相似文献   

10.
Recombinant hirudin variant rHV2-Lys 47 (MW = 6906.5) was intentionally deamidated by incubation in pH 9 phosphate buffer at 37 degrees C. Anion-exchange HPLC analysis showed that 11 forms could be generated. These were isolated and purified by combined anion-exchange and reversed-phase HPLC. Acid-catalyzed carboxyl methylation was used to introduce a mass shift of +15 amu per deamidated residue present in the molecule before analysis by liquid secondary ion mass spectrometry (LSIMS). Methylation enhanced, in particular, the abundance of the sequence ions in the LSIMS spectra. This permitted the determination of both the number (three) and the localization of the deamidated residues: Asn 52, Asn 53, and a residue located in the N-terminal 1-39 domain. Complementary sequencing techniques proved that the latter residue was Asn 33. Altogether four mono-, three di-, and four tri-deamidated forms were identified. The heterogeneity of the forms having identical deamidation positions but being chromatographically separable is thought to arise from the generation of alpha- and beta-aspartyl iso forms during the nonenzymatic deamidation process.  相似文献   

11.
The nonenzymatic rates of deamidation of Asn residues in a series of pentapeptides with the sequences VSNXV and VXNSV, where X is one of 10 different amino acids, were determined at neutral, alkaline, and acid pH values. The results demonstrate that in neutral and alkaline solutions the amino acid residue on the amino side of the Asn had little or no effect on the rate of deamidation regardless of its charge or size. The group on the carboxyl side of Asn affected the rate of deamidation significantly. Increasing size and branching in the side chain of this residue decreased the rate of deamidation by as much as 70-fold compared to glycine in the N-G sequence, which had the greatest rate of deamidation. In acidic solution, the rate of deamidation of the Asn residue was not affected by the amino acid sequence of the peptide. The products for each deamidation reaction were tested for the formation of isoAsp residues. In neutral and alkaline solutions, all products showed that the isoAsp:Asp peptide products were formed in about a 3:1 ratio. In acidic solution, the Asp peptide was the only deamidation product formed. All peptides in which a Ser residue follows the Asn residue were found to undergo a peptide cleavage reaction in neutral and alkaline solutions, yielding a tripeptide and a dipeptide. The rate of the cleavage reaction was about 10% of the rate of the deamidation pathway at neutral and alkaline pH values. The rates of deamidation of Asn residues in the peptides studied were not affected by ionic strength, and were not specific base catalyzed. General base catalysis was observed for small bases like ammonia. A model for the deamidation reaction is proposed to account for the observed effects.  相似文献   

12.
Deamidation is a prevalent modification of crystallin proteins in the vertebrate lens. The effect of specific sites of deamidation on crystallin stability in vivo is not known. Using mass spectrometry, a previously unreported deamidation in beta B1-crystallin was identified at Gln146. Another deamidation was investigated at Asn157. It was determined that whole soluble beta B1 contained 13%-17% deamidation at Gln146 and Asn157. Static and quasi-elastic laser light scattering, circular dichroism, and heat aggregation studies were used to explore the structure and associative properties of recombinantly expressed wild-type (wt) beta B1 and the deamidated beta B1 mutants, Q146E and N157D. Dimer formation occurred for wt beta B1, Q146E, and N157D in a concentration-dependent manner, but only Q146E showed formation of higher ordered oligomers at the concentrations studied. Deamidation at Gln146, but not Asn157, led to an increased tendency of beta B1 to aggregate upon heating. We conclude that deamidation creates unique effects depending upon where the deamidation is introduced in the crystallin structure.  相似文献   

13.
The rates of deamidation of α-synuclein and single Asn residues in 13 Asn-sequence mutants have been measured for 5 × 10−5M protein in both the absence and presence of 10−2M sodium dodecyl sulfate (SDS). In the course of these experiments, 370 quantitative protein deamidation measurements were performed and 37 deamidation rates were determined by ion cyclotron resonance Fourier transform mass spectrometry, using an improved whole protein isotopic envelope method and a mass defect method with both enzymatic and collision-induced fragmentation. The measured deamidation index of α-synuclein was found to be 0.23 for an overall deamidation half-time of 23 days, without or with SDS micelles, owing primarily to the deamidation of Asn(103) and Asn(122). Deamidation rates of 15 Asn residues in the wild-type and mutant proteins were found to be primary sequence controlled without SDS. However, the presence of SDS micelles slowed the deamidation rates of nine N-terminal region Asn residues, caused by the known three-dimensional structures induced through protein binding to SDS micelles.  相似文献   

14.
《MABS-AUSTIN》2013,5(4):879-893
Monoclonal antibody (mAb) products are extraordinarily heterogeneous due to the presence of a variety of enzymatic and chemical modifications, such as deamidation, isomerization, oxidation, glycosylation, glycation, and terminal cyclization. The modifications in different domains of the antibody molecule can result in different biological consequences. Therefore, characterization and routine monitoring of domain-specific modifications are essential to ensure the quality of the therapeutic antibody products. For this purpose, a rapid and informative methodology was developed to examine the heterogeneity of individual domains in mAb products. A recently discovered endopeptidase, IdeS, cleaves heavy chains below the hinge region, producing F(ab')2 and Fc fragments. Following reduction of disulfide bonds, three antibody domains (LC, Fd, and Fc/2) can be released for further characterization. Subsequent analyses by liquid chromatography/mass spectrometry, capillary isoelectric focusing, and glycan mapping enable domain-specific profiling of oxidation, charge heterogeneity, and glycoform distribution. When coupled with reversed phase chromatography, the unique chromatographic profile of each molecule offers a simple strategy for an identity test, which is an important formal test for biopharmaceutical quality control purposes. This methodology is demonstrated for a number of IgGs of different subclasses (IgG1, IgG2, IgG4), as well as an Fc fusion protein. The presented technique provides a convenient platform approach for scientific and formal therapeutic mAb product characterization. It can also be applied in regulated drug substance batch release and stability testing of antibody and Fc fusion protein products, in particular for identity and routine monitoring of domain-specific modifications.  相似文献   

15.
Monoclonal antibody (mAb) products are extraordinarily heterogeneous due to the presence of a variety of enzymatic and chemical modifications, such as deamidation, isomerization, oxidation, glycosylation, glycation, and terminal cyclization. The modifications in different domains of the antibody molecule can result in different biological consequences. Therefore, characterization and routine monitoring of domain-specific modifications are essential to ensure the quality of the therapeutic antibody products. For this purpose, a rapid and informative methodology was developed to examine the heterogeneity of individual domains in mAb products. A recently discovered endopeptidase, IdeS, cleaves heavy chains below the hinge region, producing F(ab')2 and Fc fragments. Following reduction of disulfide bonds, three antibody domains (LC, Fd, and Fc/2) can be released for further characterization. Subsequent analyses by liquid chromatography/mass spectrometry, capillary isoelectric focusing, and glycan mapping enable domain-specific profiling of oxidation, charge heterogeneity, and glycoform distribution. When coupled with reversed phase chromatography, the unique chromatographic profile of each molecule offers a simple strategy for an identity test, which is an important formal test for biopharmaceutical quality control purposes. This methodology is demonstrated for a number of IgGs of different subclasses (IgG1, IgG2, IgG4), as well as an Fc fusion protein. The presented technique provides a convenient platform approach for scientific and formal therapeutic mAb product characterization. It can also be applied in regulated drug substance batch release and stability testing of antibody and Fc fusion protein products, in particular for identity and routine monitoring of domain-specific modifications.  相似文献   

16.
A mutant (D165N) of clostridial glutamate dehydrogenase (GDH) in which the catalytic Asp is replaced by Asn surprisingly showed a residual 2% of wild-type activity when purified after expression in Escherichia coli at 37 degrees C. This low-level activity also displayed Michaelis constants for substrates that were remarkably similar to those of the wild-type enzyme. Expression at 8 degrees C gave a mutant enzyme preparation 1000 times less active than the first preparation, but progressively, over 2 weeks' incubation at 37 degrees C in sealed vials, this enzyme regained 90% of the specific activity of wild type. This suggested that the mutant might undergo spontaneous deamidation. Mass spectrometric analysis of tryptic peptides derived from D165N samples treated in various ways showed (i) that the Asn is in place in D165N GDH freshly prepared at 8 degrees C; (ii) that there is a time-dependent reversion of this Asn to Asp over the 2-week incubation period; (iii) that detectable deamidation of other Asn residues, in Asn-Gly sequences, mainly occurred in sample workup rather than during the 2-week incubation; (iv) that there is no significant deamidation of other randomly chosen Asn residues in this mutant over the same period; and (v) that when the protein is denatured before incubation, no deamidation at Asn-165 is detectable. It appears that this deamidation depends on the residual catalytic machinery of the mutated GDH active site. A literature search indicates that this finding is not unique and that Asn may not be a suitable mutational replacement in the assessment of putative catalytic Asp residues by site-directed mutagenesis.  相似文献   

17.
Charge heterogeneity of monoclonal antibodies is considered a critical quality attribute and hence needs to be monitored and controlled by the manufacturer. Typically, this is accomplished via separation of charge variants on cation exchange chromatography (CEX) using a pH or conductivity based linear gradient elution. Although an effective approach, this is challenging particularly during continuous processing as creation of linear gradient during continuous processing adds to process complexity and can lead to deviations in product quality upon slightest changes in gradient formation. Moreover, the long length of elution gradient along with the required peak fractionation makes process integration difficult. In this study, we propose a novel approach for separation of charge variants during continuous CEX chromatography by utilizing a combination of displacement mode chromatography and salt-based step elution. It has been demonstrated that while the displacement mode of chromatography enables control of acidic variants ≤26% in the CEX eluate, salt-based step gradient elution manages basic charge variant ≤25% in the CEX eluate. The proposed approach has been successfully demonstrated using feed materials with varying compositions. On comparing the designed strategy with 2-column concurrent (CC) chromatography, the resin specific productivity increased by 95% and resin utilization increased by 183% with recovery of main species >99%. Further, in order to showcase the amenability of the designed CEX method in continuous operation, the method was examined in our in-house continuous mAb platform.  相似文献   

18.
Glycation has been observed in antibody therapeutics manufactured by the fed-batch fermentation process. It not only increases the heterogeneity of antibodies, but also potentially affects product safety and efficacy. In this study, non-glycated and glycated fractions enriched from a monoclonal antibody (mAb1) as well as glucose-stressed mAb1 were characterized using a variety of biochemical, biophysical and biological assays to determine the effects of glycation on the structure and function of mAb1. Glycation was detected at multiple lysine residues and reduced the antigen binding activity of mAb1. Heavy chain Lys100, which is located in the complementary-determining region of mAb1, had the highest levels of glycation in both stressed and unstressed samples, and glycation of this residue was likely responsible for the loss of antigen binding based on hydrogen/deuterium exchange mass spectrometry analysis. Peptide mapping and intact liquid chromatography-mass spectrometry (LC-MS) can both be used to monitor the glycation levels. Peptide mapping provides site specific glycation results, while intact LC-MS is a quicker and simpler method to quantitate the total glycation levels and is more useful for routine testing. Capillary isoelectric focusing (cIEF) can also be used to monitor glycation because glycation induces an acidic shift in the cIEF profile. As expected, total glycation measured by intact LC-MS correlated very well with the percentage of total acidic peaks or main peak measured by cIEF. In summary, we demonstrated that glycation can affect the function of a representative IgG1 mAb. The analytical characterization, as described here, should be generally applicable for other therapeutic mAbs.  相似文献   

19.
Products of the degradation of human growth hormone-releasing factor (GRF) in aqueous solutions (15-200 microM) have been isolated and fully characterized. The cleavage product, GRF(4-44)-NH2, and the isomerization product, [beta-Asp3]GRF(1-44)-NH2, from the degradation of GRF(1-44)-NH2 in acidic solution and the corresponding products, GRF(4-29)-NH2 and [beta-Asp3]GRF(1-29)-NH2, from the degradation of GRF(1-29)-NH2 have been isolated and characterized. The products, [beta-Asp8]GRF(1-44)-NH2 and [Asp8]GRF(1-44)-NH2, from the deamidation of GRF(1-44)-NH2 at pH 8.0 and the corresponding products, [beta-Asp8]GRF(1-29)-NH2 and [Asp8]GRF(1-29)-NH2, from the deamidation of GRF(1-29)-NH2 have been isolated and characterized. All the degradation products of GRF(1-44)-NH2 and GRF(1-29)-NH2 were evaluated for biological activity and found to have much lower in vitro potencies than the parent peptides. Degradation occurs at Asp3 and Asn8 and the kinetics of these various transformations versus pH and temperature have been studied. GRF is most stable at pH 4-5. At pH below the pKa of the Asp3 side-chain (pH less than 4), cleavage at Asp3-Ala4 is the major route of degradation. For pH greater than 4, isomerization of Asp3 to beta-Asp3 (iso-Asp3) predominates. The rates of cleavage and isomerization are simple first order and vary with pH, independent of buffer concentration, such that the protonated (COOH) form of Asp3 undergoes cleavage while the ionized (COO-) form isomerizes. The more rapid deamidation of Asn8 to generate beta-Asp8 and Asp8 in about a 4:1 ratio, presumably via a cyclic imide intermediate, occurs at pH greater than or equal to 5 and is general base-catalyzed. Evidence was also obtained for direct hydrolysis of protonated Asn8 in GRF(1-29)-NH2 at pH less than or equal to 2 to give exclusively [Asp8]GRF(1-29)-NH2. The deamidation of Asn8 in GRF(1-29)-NH2 at pH 8.0, 22-55 degrees C, is relatively insensitive to temperature for T less than 37 degrees C, possibly due to conformational constraints. Asp25 and Asn35 are sterically, conformationally, or otherwise hindered with respect to these changes as no degradation at these sites was observed under the conditions employed.  相似文献   

20.
During the manufacture of the chemotherapeutic enzyme Erwinia chrysanthemi l-asparaginase, a small proportion (approximately 5–15%) of acidic variants, including deamidated species, are observed. Although the deamidated forms appear to have similar specific activity and quaternary structure to the unmodified enzyme, monitoring and control of these forms is important from a regulatory perspective. The extent of Asn to Asp deamidation directly correlates with the time taken to thaw the Erwinia cells. Erwinia l-asparaginase is a tetrameric enzyme containing one site, Asn281, theoretically very labile to deamidation due to the sequence Asn-Gly. Structurally, this part of the protein sequence is completely buried inside the tetramer, but solvent-exposed upon tetramer dissociation. During the cell thawing and alkaline lysis sequence of the process, lengthening the cell thaw times by up to 24 h allowed tetramer to reassociate, protected Asn281 from deamidation and reduced the acidic species content of the l-asparaginase from approximately 17% to 9% as measured by weak cation-exchange (WCX) HPLC. The correlation of cell thaw time with acidic species content was also confirmed using capillary zone electrophoresis (CZE) and peptide mapping. These studies demonstrate that cell thaw time is an important, if unexpected, control variable for l-asparaginase deamidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号