首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe an ultra high performance liquid chromatography–tandem mass spectrometry (UHPLC MS/MS) method suitable for a routine laboratory to determine endogenous and exogenous glucocorticoids in plasma, plasma ultrafiltrate, urine and saliva in a single analytical run. After addition of a multi-analyte internal standard, a standardised sample preparation procedure with solid phase extraction followed, before injecting into a tandem mass spectrometer with positive mode electron spray ionisation and multiple reactant monitoring acquisition. The chromatography time was 3 min. The limit of quantitation for cortisol and cortisone in plasma was 3.75 nmol/L and linearity extended to 2000 nmol/L. The limit of quantitation for cortisol in plasma ultrafiltrate and saliva was 0.6 nmol/L. The limit of quantitation for 11-deoxycortisol and prednisolone was 5 nmol/L and for dexamethasone 1 nmol/L. The intra-assay CV was <5% and the inter-assay CV <10% for all analytes in all matrices. Comparison with an immuno-assay (IA) plasma cortisol method resulted in a regression equation of UHPLC = 0.79 × IA + 31.12 with R2 = 0.960 (p < 0.0001). Comparison with a high performance liquid chromatography (HPLC) cortisol method yielded a regression equation of UHPLC = 1.06 × HPLC + 9.82, R2 = 0.992 (p < 0.0001). The simultaneous measurement of endogenous and exogenous glucocorticoids contributed to patient care in cases with dexamethasone and metyrapone dynamic tests and unsuspected therapeutic glucocorticoid use.  相似文献   

2.
This study reports a sensitive analytical method suitable for the quantitative analysis of ethylenethiourea (ETU) in human urine and its application to samples from the general population. Sample preparation involved the use of diatomaceous earth extraction columns to remove matrix interferences. Quantification was achieved by liquid chromatography–mass spectrometry using positive ion atmospheric pressure chemical ionisation. Within-day and between-day variability of 14% (n = 10) and 11% (n = 6), respectively, were obtained at 98 nmol/l (10 μg l−1). The assay was linear over the investigated range 2.5–245 nmol/l, with a limit of detection of 2.5 nmol/l. The method was applied to monitoring background levels of ETU in urine samples from the general population in the UK. Results obtained from 361 spot samples contained ETU levels ranging from less than the detection limit (54% of samples) to a maximum of 15.8 μmol/mol creatinine (14.3 μg/g creatinine). The 95th percentile was 5.7 μmol/mol creatinine (5.2 μg/g creatinine).  相似文献   

3.
Folates act as essential coenzymes in many biological pathways. Alteration in folate form distribution might have biological significance, especially in relation to certain genetic polymorphisms. We developed a stable-isotope dilution ultra performance liquid chromatography–mass spectrometry (UPLC–MS/MS) method for quantification of the folate forms 5-methyltetrahydrofolate (5-methylTHF), 5-formylTHF, 5,10-methenylTHF, THF, and folic acid in serum. After extraction using an ion exchange and mixed mode solid-phase, samples were separated and detected using an UPLC–MS/MS system. The quantification limits were between 0.17 nmol/L (5-formylTHF) and 1.79 nmol/L (THF), and the assay was linear up to 100 nmol/L (5-methylTHF) and 10 nmol/L (5-formylTHF, 5,10-methenylTHF, THF, and folic acid). The intraassay CVs for 5-methylTHF and 5-formylTHF were 2.0% and 7.2%, respectively. Mean recoveries were between 82.3% for THF and 110.8% for 5,10-methenylTHF. Concentrations of total folate measured by the new method showed a strong correlation with those measured by an immunologic assay (r = 0.939; p < 0.001). The mean total folate from 32 apparently healthy subjects was 18.09 nmol/L, of which 87.23% was 5-methylTHF. Concentrations of homocysteine showed a better correlation to the total folate measured by the new method compared to that obtained by an immunologic assay. We also confirmed that MTHFR polymorphism has a significant effect on folate distribution in this small population of non-supplemented subjects.  相似文献   

4.
Midazolam is an ultra short acting benzodiazepine derivative and a specific probe for phenotyping cytochrome P450 (P450) 3A4/5 activity. A rapid, sensitive, and selective LC–MS/MS method was developed for simultaneous quantitation of midazolam and its metabolites (1′-hydroxymidazolam and 4-hydroxymidazolam). Deuterated (D5) analog of midazolam was utilized as an internal standard. Sample preparation either from human plasma (100 μL) or liver microsomal incubations involved a simple protein precipitation using acetonitrile (900 μL) with an average recovery of >90% for all compounds. The chromatographic separation was achieved using Zorbax-SB Phenyl, Rapid Resolution HT (2.1 mm × 100 mm, 3.5 μm) and a gradient elution with 10 mM ammonium acetate in 10% methanol (A) and acetonitrile (B). The flow rate was 0.25 mL/min and total run time was 5.5 min. Calibration curves were linear over the concentration range of 0.100–250 ng/mL. The lower limit of quantitation (LLOQ) was 0.1 ng/mL for all three analytes. The accuracy and precision, estimated at LLOQ and three concentration levels of quality control samples in six replicates, were within 85–115%. In conclusion, a robust, simple and highly sensitive analytical method was developed and validated for the analysis of midazolam and its metabolites. This method is suitable for characterizing the P450 3A4/5 activity in vitro or in human pharmacokinetic studies allowing administration of smaller doses of midazolam.  相似文献   

5.
Flavanoid kaempferol is mainly present as glucuronides and sulfates in rat plasma, and small amounts of the intact aglycone are also detected. In the this study, a rapid, specific and sensitive liquid chromatography–electrospray ionization-tandem mass spectrometry method (HPLC–MS/MS) was developed and validated for determination of kaempferol and its major metabolite glucuronidated kaempferol in rat plasma. A liquid–liquid extraction with acetic ether was involved for the extraction of kaempferol and internal standard. Analytes were separated on a C18 column (150 mm × 2.1 mm, 4.5 μm, Waters Corp.) with isocratic elution at a flow-rate of 0.3 ml min−1. The mobile phase was consisted of 0.5% formic acid and acetonitrile (50:50, v/v). The Quattro Premier HPLC–MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. The method was validated according to the FDA guidelines for validation of bioanalytical method. The validated method was successfully applied to the study of the pharmacokinetics in rats after oral administration of kaempferol with different doses.  相似文献   

6.
A sensitive and rapid HTLC–ESI-MS/MS method with an advanced online sample preparation was developed for determination of the γ-secretase inhibitor MK-0752 in human plasma using an internal standard. Plasma samples (100 μL) were diluted and injected directly onto an online extraction column (Cohesive Cyclone MAX 0.5 mm × 50 mm, >30 μm), the sample matrix was washed out with an aqueous solution, and retained analytes were eluted out and transferred directly to the analytical column (Phenomenex Gemini 3μ C18 110A, 50 mm × 2.0 mm at 50 °C) for separation using a gradient mobile phase. The eluted analytes were then detected on an API-3000 LC–MS/MS System with ESI and a negative multiple reaction monitoring mode. The monitored ion transitions were m/z 441 → 175 for MK-0752 and 496 → 175 for the internal standard. Online extraction recoveries were 81%. The method was validated and was linear in the range of 0.05–50 μg/mL. Within-day and between-day precisions were < 8.6%, and accuracies were 0.7 and 7.1%. This method was applied to the measurement of plasma MK-0752 levels in a Phase I study of pediatric patients with recurrent or refractory brain tumors.  相似文献   

7.
Analysis of plasma catecholamines (norepinephrine, epinephrine and dopamine) by high-performance liquid chromatography using 1,2-diphenylethylenediamine as a fluorescent reagent is described. We have developed an automatic catecholamine analyser, based on pre-column fluorescence derivatization and column switching. The analysis time for one assay was 15 min. The correlation coefficients of the linear regression equations were greater than 0.9996 in the range 10–10 000 pg/ml. The detection limit, at a signal-to-noise ratio of 3, was 2 pg/ml for dopamine. A new method of sample preparation for the pre-column fluorescence derivatization of plasma catecholamines was used. In order to protect the catecholamines from decomposition, an ion-pair complex between boric acid and the diol group in the catecholamine was formed at a weakly alkaline pH. The stabilities of plasma catecholamines were evaluated at several temperatures. After complex formation, the catecholamines were very stable at 17°C for 8 h, and the coefficients of variation for norepinephrine, epinephrine and dopamine were 1.2, 4.2 and 9.3%, respectively.  相似文献   

8.
A rapid, sensitive and simple high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method was developed for determination of cefazedone in human plasma using metronidazole as internal standard (IS). The chromatographic separation was achieved on an Ultimate XB-CN column (2.1 mm × 150 mm, 5 μm) with an isocratic mobile phase of acetonitrile and 20 mM ammonium acetate in 0.1% formic acid in water (15:85, v/v). Detection was performed using electrospray ionization in positive ion multiple reaction-monitoring mode (SRM), monitoring the transitions m/z 548.2 → 344.1 for cefazedone and m/z 172.2 → 128.1 for IS. Calibration curves were linear over a wide range of 0.20–401.12 μg/mL for cefazedone in plasma. The lower limit of quantification (LLOQ) was 0.20 μg/mL. The intra- and inter-day precisions were less than 7.2%. The average recovery of cefazedone was 90.8–91.0%. The validated method was successfully applied to the pharmacokinetic study of cefazedone in Chinese healthy volunteers following intravenous (IV) administration of 500, 1000 and 2000 mg cefazedone injection.  相似文献   

9.
A rapid, sensitive and specific method for the determination of cepharanthine in human plasma using high performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS) was described. Cepharanthine and the internal standard (I.S.), telmisartan, were extracted from human plasma by methanol to precipitate the protein. A centrifuged upper layer was then evaporated and reconstituted with 100 μL methanol. Chromatographic separation was performed on an AGILENT XDB-C8 column (150 mm × 2.1 mm, 5.0 μm, Agilent, USA) using a gradient mobile phase with 1 mmol/L ammonium acetate in water with 0.05% formic acid and methanol. Detection and quantitation was performed by MS/MS using electrospray ionization (ESI) and multiple reaction monitoring (MRM) in the positive ion mode. The most intense [M+H]+ MRM transition of cepharanthine at m/z 607.3 → 365.3 was used for quantitation and the transition at m/z 515.5 → 276.4 was used to monitor telmisartan. The calibration curve was linear within the concentration range of 0.5–200.0 ng/mL (= 0.9994). The limit of quantification (LOQ) was 0.5 ng/mL. The extraction recovery was above 81.1%. The accuracy was higher than 92.3%. The intra- and inter-day precisions were less than 9.66%. The method was accurate, sensitive and simple and was successfully applied to a pharmacokinetic study after single intravenous administration of 50 mg cepharanthine in 12 healthy Chinese volunteers.  相似文献   

10.
Hollow fiber liquid-phase microextraction (HF-LPME) coupled with high-performance liquid chromatography was used to simultaneously determine three Aconitum alkaloids, including aconitine (AC), hypaconitine (HA) and mesaconitine (MA) in human urine sample. Analytes were extracted from 5 mL urine sample containing 1.0 mmol/L NaOH into 1-octanol membrane phase impregnated in the pores of hollow fiber wall, and then back extracted into acidified aqueous solution in the lumen of the hollow fiber. After extraction, 10 μL of the acceptor phase was analyzed directly by HPLC. In this method, some important extraction parameters, such as organic solvent, extraction time, stirring rate, pH of donor phase and acceptor phase, temperature, and the volume of acceptor phase were optimized. This method provided 98- to 288-fold enrichment factors within 60 min of extraction and good repeatability with RSDs of 0.99–7.22%. The calibration curves were linear over the ranges of 16.0–128.0 μg/L for AC, 11.0–88.0 μg/L for HA and 8.1–64.8 μg/L for MA in human urine sample, with correlation coefficients of 0.9949, 0.9969 and 0.9904, respectively. Limits of detection were from 0.7 to 1.5 μg/L, and recoveries from spiked urine sample varied from 84.4% to 106.2% for AC, 77.3% to 85.6% for HA and 90.1% to 100.8% for MA.  相似文献   

11.
The degradation and biological role of the cyclic pyrimidine nucleotide cCMP is largely elusive. We investigated nucleoside 3′,5′-cyclic monophosphate (cNMP) specificity of six different recombinant phosphodiesterases (PDEs) by using a highly-sensitive HPLC–MS/MS detection method. PDE7A1 was the only enzyme that hydrolyzed significant amounts of cCMP. Enzyme kinetic studies using purified GST-tagged truncated PDE7A1 revealed a cCMP KM value of 135 ± 19 μM. The Vmax for cCMP hydrolysis reached 745 ± 27 nmol/(min mg), which is about 6-fold higher than the corresponding velocity for adenosine 3′,5′-cyclic monophosphate (cAMP) degradation. In summary, PDE7A is a high-speed and low-affinity PDE for cCMP.  相似文献   

12.
The current paper describes a validated method for the detection and quantification of naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018), an ingredient of a herbal mixture called “Spice”, by means of HPLC–ESI–MS–MS in serum. Lower limit of detection and lower limit of quantification were 0.07 and 0.21 ng/ml, respectively. In 2 subjects who consumed ca. 50 μg/kg of JWH-018 by smoking, the active ingredient was detected by means of the described method. Thereby, the serum concentrations reached values of approx. 10 ng/ml and dropped within 3 h very fast (<10% of the measured maximum concentrations).  相似文献   

13.
Estimation of catecholamines in human plasma was made by ion-exchange chromatography coupled with fluorimetry.Catecholamines in deproteinized plasma were adsorbed onto Amberlite CG-50 (pH 6.5, buffered with 0.4 M phosphate buffer) and selectively eluted by 0.66 M boric acid. The catecholamine fraction was separated further on a column of Amberlite IRC-50 which was coupled with a device for the automated performance of the trihydroxyindole method (epinephrine and norepinephrine) or the 4-aminobenzoic acid—oxidation method (dopamine). One sample could be analysed within 25 min with either method. The lower detection limits were 0.02 ng for epinephrine and dopamine, and 0.04 ng for norepinephrine.Plasma catecholamine contents of healthy adults at rest were epinephrine 0.07 ± 0.01 ng/ml (n = 19), norepinephrine 0.27 ± 0.03 ng/ml (n = 19) and dopamine 0.22 ± 0.03 ng/ml (n = 26).The procedure of adsorption and elution of the plasma catecholamines by ion-exchange resin was simple, the simplicity contributing to constant recovery. The catecholamine fraction could be analysed without evaporation of the eluate. The analytical column could be used for the analysis of more than 1000 samples before excessive back-pressure developed. Our method of continuous measurement of plasma catecholamine fulfils clinical requirements.  相似文献   

14.
Determination of estrogens in plasma is important in evaluation of effects of some anticancer drugs, such as aromatase inhibitors. However, as reported previously, high performance liquid chromatography–radio immunoassay (HPLC–RIA) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) with chemical derivatization require complicated sample preparation. In this study, a highly sensitive and simple method for determination of estrone (E1), 17β-estradiol (E2) and estrone 3-sulfate (E1S) in human plasma has been developed. Following diethylether extraction from plasma, analytes were purified by immunosorbents and then determined by LC–MS/MS using electrospray ionization (ESI). Immunosorbents were prepared by immobilization of specific antibodies raised against each analyte onto solid support. Use of selective immunosorbents in sample preparation removed interference in plasma samples that would cause ionization suppression, and markedly improved the sensitivity of LC–MS/MS for these analytes, without derivatization. Calibration curves of each analyte showed good linearity and reproducibility over the range of 0.05–50 pg/injection for E1, 0.2–50 pg/injection for E2 and 0.05–300 pg/injection for E1S, respectively. The mean values of lower limits of quantification (LLOQ) in human plasma corrected by recovery of deuterated estrogens (internal standard, I.S.) were 0.1892 pg/mL for E1, 0.7064 pg/mL for E2 and 0.3333 pg/mL for E1S, respectively. These LLOQ values were comparable to those previous reported using HPLC–RIA and LC–MS/MS. Using this method, the normal levels of three estrogens in healthy female plasma (n = 5) were determined. The mean values of E1, E2 and E1S were 38.0 pg/mL (range 24.8–53.0), 34.3 pg/mL (22.6–46.6) and 786 pg/mL (163–2080), respectively. The immunoaffinity LC–MS/MS described here allows sensitive and accurate quantification of E1, E2 and E1S without laborious sample preparation.  相似文献   

15.
A new one-step liquid chromatography–electrospray tandem MS/MS method is described to quantify ezetimibe (EZM) a novel lipid lowering drug in human serum. Also using collision-induced dissociation (CID) of the analyte, identification and chromatographic separation of its major metabolite, ezetimibe glucuronide (EZM-G) is achieved in this study. A thawed serum aliquot of 100 μL was deproteinated by addition of 500 μL methanol containing omeprazole as internal standard (I.S.). Separation of the drug, its metabolite and the I.S. were achieved using acetonitrile–water (70:30, v/v) as mobile phase at flow rate of 0.5 mL/min on a MZ PerfectSil target C18 column. Multiple reaction monitoring (MRM) mode of precursor–product ion transition (408.7 → 272.0 for EZM and 345 → 194.5 for the I.S.) was applied for detection and quantification of the drug while, EZM-G was chromatographically separated and identified using CID. The analytical method was linear over the concentration range of 1–32 ng/mL of EZM in human serum with a limit of quantification of 1 ng/mL. The coefficient variation values of both inter- and intra-day analysis were less than 8% whereas the percentage error was less than 3.7. The validated method was applied in a randomized cross-over bioequivalence study of two different EZM preparations in 24 healthy volunteers.  相似文献   

16.
A fast and sensitive HPLC–APCI-MS/MS method was developed for the determination of ergosta-4,6,8(14),22-tetraen-3-one (ergone) in rat plasma. The plasma sample containing ergone and ergosterol (internal standard) were simply treated with acetone to precipitate and remove proteins and the isolated supernatants were directly injected into the HPLC–APCI-MS/MS system. Chromatographic separation was performed on a 1.8 μm Zorbax SB-C18 column (100 mm × 3.0 mm) with a 97:3 (v/v) mixed solution of methanol and 0.1% aqueous formic acid being used as mobile phase. Quantification was performed by multiple selected reactions monitoring (MRM) of the transitions with (m/z)+ 393–268 for ergone and (m/z)+ 379–69 for the IS. The method was validated in the concentration range of 5–1600 ng/mL for ergone. The precision of the assay (RSD%) was less than 10.5% at all concentrations levels within the tested range and adequate accuracy, and the limit of detection was 1.5 ng/mL. The absolute recoveries of both ergone and ergosterol from the plasma were more than 95%. The developed method has been successfully applied to the pharmacokinetic study of the drug in SD rats.  相似文献   

17.
An improved liquid chromatographic method with on-line solid phase extraction (SPE) and tandem mass spectrometric detection was optimised for quantification of the anti-HIV peptide Sifuvirtide in human plasma. The SPE sorbents, loading buffer composition and other aspects of the on-line SPE column were investigated in detail for efficiently extracting the interesting peptides and simultaneously discarding the large amount of proteins. The gradient elution program was optimised on the analysis column to decrease the matrix effect and obtain excellent selectivity. The multiple charge ion at m/z 946.4 of Sifuvirtide was quantified by a linear ion trap mass spectrometer, operating in the positive mode, and selective reaction monitoring (SRM) acquisition. Method validation results demonstrated that the linear calibration curve covered a range of 6.1–6250 ng/mL, and the correlation coefficients (r2) were above 0.992. The lower limit of detection (LLOD) with a signal-to-noise (S/N) ratio higher than 10 was 6.1 ng/mL. The accuracy ranged from −7.6 to 10.6%, and the intra- and inter-batch precisions were less than 8.7% and 5.5%, respectively. Finally, more than nine hundred of samples from a clinical trial was completely analyzed using this on-line SPE coupled HPLC–MS/MS system in one single week, due to the rapid run-time of individual sample (6.5 min).  相似文献   

18.
A total on-line analysis of a target protein from a plasma sample was made using a selective immunoextraction step coupled on-line to an immobilized enzymatic reactor (IMER) for the protein digestion followed by LC–MS/MS analysis. For the development of this device, cytochrome c was chosen as model protein due to its well-known sequence. An immunosorbent (IS) based on the covalent immobilization of anti-cytochrome c antibodies on a solid support was made and an immunoextraction procedure was carefully developed to assess a selective extraction of the target protein from plasma. For the first time, IS was easily coupled on-line with a laboratory-made IMER based on pepsin. The whole on-line device (IS-IMER-LC-MS/MS) allowed the quantification of cytochrome c from 8.5 pmol to 1.7 nmol in buffer medium. Finally, this device was applied to the analysis of only 85 pmol of cytochrome c from plasma with a RSD value lower than 10% (n = 3).  相似文献   

19.
A rapid and specific LC–MS/MS based bioanalytical method was developed and validated for the determination of 18-(p-iodophenyl)octadecyl phosphocholine (CLR1401), a novel phosphocholine drug candidate, in rat plasma. The optimal chromatographic behavior of CLR1401 was achieved on a Kromasil silica column (50 mm × 3 mm, 5 μm) under hydrophilic interaction chromatography. The total LC analysis time per injection was 2.8 min with a flow rate of 1.5 mL/min under gradient elution. Liquid–liquid extraction in a 96-well format using ethyl acetate was developed and applied for method validation and sample analysis. The method validation was conducted over the curve range of 2.00–1000 ng/mL using 0.0500 mL of plasma sample. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels showed ≤ 5.9% relative standard deviation (RSD) and −10.8 to −1.4% relative error (RE). The method was successfully applied to determine the toxicokinetics of CLR1401 in rats from three dose groups of 0.4, 4.0, and 10.0 mg/kg/day via intravenous administration.  相似文献   

20.
Tetramethylene disulfotetramine (tetramine) is a rodenticide associated with numerous poisonings was extracted and quantified in human urine using both gas chromatography/mass spectrometry (GC/MS) and GC/tandem mass spectrometry (MS/MS). 1200 μL samples were prepared using a 13C4-labeled internal standard, a 96-well format, and a polydivinyl-benzene solid phase extraction sorbent bed. Relative extraction recovery was greater than 80% at 100 ng/mL. Following extraction, samples were preconcentrated by evaporation at 60 °C, and reconstituted in 50 μL acetonitrile. One-microliter was injected in a splitless mode on both instruments similarly equipped with 30 m × 0.25 mm × 25 μm, 5% phenyl-methylpolysiloxane gas chromatography columns. A quantification ion and a confirmation ion (GC/MS) or analogous selected reaction monitoring transitions (GC/MS/MS) were integrated for all reported results. The method was characterized for precision (5.92–13.4%) and accuracy (96.4–111%) using tetramine-enriched human urine pools between 5 and 250 ng/mL. The method limit of detection was calculated to be 2.34 and 3.87 ng/mL for GC/MS and GC/MS/MS, respectively. A reference range of 100 unexposed human urine samples was analyzed for potential endogenous interferences on both instruments—none were detected. Based on previous literature values for tetramine poisonings, this urinary method should be suitable for measuring low, moderate, and severe tetramine exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号